
Simulink® Coverage™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coverage™ User's Guide
© COPYRIGHT 2017–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release R2019a)
September 2019 Online only Revised for Version 4.4 (Release R2019b)
March 2020 Online only Revised for Version 5.0 (Release R2020a)
September 2020 Online only Revised for Version 5.1 (Release R2020b)
March 2021 Online only Revised for Version 5.2 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Model Coverage Definition
1

Model Coverage . 1-2

Types of Model Coverage . 1-3
Execution Coverage (EC) . 1-3
Decision Coverage (DC) . 1-3
Condition Coverage (CC) . 1-3
Modified Condition/Decision Coverage (MCDC) . 1-4
Cyclomatic Complexity . 1-4
Lookup Table Coverage . 1-5
Signal Range Coverage . 1-5
Signal Size Coverage . 1-5
Objectives and Constraints Coverage . 1-6
Saturate on Integer Overflow Coverage . 1-7
Relational Boundary Coverage . 1-7

Simulink Optimizations and Model Coverage . 1-9
Inlined Parameters . 1-9
Block Reduction . 1-9
Conditional Input Branch Execution . 1-9

Model Objects That Receive Model Coverage
2

Model Objects That Receive Coverage . 2-2
Abs . 2-6
Bias . 2-6
Combinatorial Logic . 2-6
Compare to Constant . 2-7
Compare to Zero . 2-7
Data Type Conversion . 2-7
Dead Zone . 2-7
Direct Lookup Table (n-D) . 2-8
Discrete Filter . 2-9
Discrete FIR Filter . 2-9
Discrete-Time Integrator . 2-9
Discrete Transfer Fcn . 2-10
Dot Product . 2-10
Enabled Subsystem . 2-10
Enabled and Triggered Subsystem . 2-10
Fcn . 2-11
For Iterator, For Iterator Subsystem . 2-12

iii

Contents

Gain . 2-12
If, If Action Subsystem . 2-12
Index Vector . 2-12
Interpolation Using Prelookup . 2-13
Library-Linked Objects . 2-13
Logical Operator . 2-13
1-D Lookup Table . 2-14
2-D Lookup Table . 2-14
n-D Lookup Table . 2-15
Math Function . 2-15
MATLAB Function . 2-15
MATLAB System . 2-15
MinMax . 2-15
Model . 2-16
Multiport Switch . 2-16
Observer Model . 2-17
PID Controller, PID Controller (2 DOF) . 2-17
Product . 2-17
Proof Assumption . 2-17
Proof Objective . 2-17
Rate Limiter . 2-18
Relational Operator . 2-18
Relay . 2-19
C/C++ S-Function . 2-19
Saturation . 2-20
Saturation Dynamic . 2-21
Simulink Design Verifier Functions in MATLAB Function Blocks 2-21
Sqrt, Signed Sqrt, Reciprocal Sqrt . 2-21
Sum, Add, Subtract, Sum of Elements . 2-21
Switch . 2-21
SwitchCase, SwitchCase Action Subsystem . 2-22
Test Condition . 2-22
Test Objective . 2-22
Triggered Models . 2-23
Triggered Subsystem . 2-23
Truth Table . 2-24
Unary Minus . 2-24
Weighted Sample Time Math . 2-24
While Iterator, While Iterator Subsystem . 2-24

Model Objects That Do Not Receive Coverage . 2-25

Setting Coverage Options
3

Specify Coverage Options . 3-2
Coverage Pane . 3-2

Access, Manage, and Accumulate Coverage Results by Using the Results
Explorer . 3-7

Accessing Coverage Data from the Results Explorer 3-7
Managing Coverage Data from the Results Explorer 3-11

iv Contents

Accumulating Coverage Data from the Results Explorer 3-11

Cumulative Coverage Data . 3-14

Cumulative Coverage Analysis . 3-15

Saturation on Integer Overflow Coverage . 3-31

Code Coverage
4

Types of Code Coverage . 4-2
Statement Coverage for Code Coverage . 4-2
Condition Coverage for Code Coverage . 4-2
Decision Coverage for Code Coverage . 4-3
Modified Condition/Decision Coverage (MCDC) for Code Coverage 4-3
Cyclomatic Complexity for Code Coverage . 4-4
Relational Boundary for Code Coverage . 4-4
Function Coverage . 4-4
Function Call Coverage . 4-5

Code Coverage for Models in Software-in-the-Loop (SIL) Mode and
Processor-in-the-Loop (PIL) Mode . 4-6

Enable SIL or PIL Code Coverage for a Model . 4-6
Review the Coverage Results for Models in SIL or PIL Mode 4-6
Limitations . 4-8

Collect Code Coverage Metrics with Simulink® Coverage™ 4-9

Specify Code Coverage Options . 4-16
Models with S-Function Blocks . 4-16
Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks

. 4-16
Models with MATLAB Function Blocks . 4-17

Coverage for Models with Code Blocks and Simulink Blocks 4-18
Set Up the Model to Record Coverage . 4-18
Record Coverage . 4-19
Review Results by Generating a Coverage Report 4-19
Justify Missing Coverage . 4-19

Software-in-the-Loop Code Coverage . 4-21

Use Justification Rules to Filter Code Coverage Outcomes 4-22

Coverage Collection During Simulation
5

Create and Run Test Cases . 5-2

v

Modified Condition and Decision Coverage (MCDC) Definitions in
Simulink Coverage . 5-3
Differences between Masking MCDC and Unique-Cause MCDC in Simulink

Coverage Coverage Analysis . 5-3
Certification Considerations for MCDC Coverage 5-4
Setting the (MCDC) Definition Used for Simulink Coverage Coverage

Analysis . 5-4
Modified Condition and Decision Coverage in Simulink Design Verifier . . . 5-5

Modified Condition and Decision Coverage in Simulink Design Verifier
. 5-6

MCDC Definitions for Simulink Coverage and Simulink Design Verifier . . . 5-6

Logical Operator Cascade Patterns . 5-9

Analyzing MCDC for Cascaded Logic Blocks . 5-10

View Coverage Results in a Model . 5-22
Overview of Model Coverage Highlighting . 5-22
Enable Coverage Highlighting . 5-22
View Coverage Details . 5-24

Model Coverage for Multiple Instances of a Referenced Model 5-26
About Coverage for Model Blocks . 5-26
Record Coverage for Multiple Instances of a Referenced Model 5-26

Obtain Cumulative Coverage for Reusable Subsystems and Stateflow®
Constructs . 5-34

Trace Coverage Results to Requirements by Using Simulink Test and
Simulink Requirements . 5-36

Prerequisites for Tracing Requirements Links . 5-36

Assess Coverage Results from Requirements-Based Tests 5-39
Rationale for Scoping Coverage Results to Linked Requirements-Based

Tests . 5-39
Prerequisites for Scoping Coverage Results to Linked Requirements-Based

Tests . 5-39
Coverage Reporting for Aggregated Coverage Results Scoped to Linked

Requirements . 5-39
Example . 5-40

Trace Coverage Results to Associated Test Cases 5-41
Prerequisites for Tracing Associated Test Cases to Coverage Results . . . 5-41
Aggregate Unit-Level Coverage Data into Top-Level Model Coverage . . . 5-41

Model Coverage for MATLAB Functions . 5-45
About Model Coverage for MATLAB Functions . 5-45
Types of Model Coverage for MATLAB Functions 5-45
How to Collect Coverage for MATLAB Functions 5-46
Examples: Model Coverage for MATLAB Functions 5-47

Coverage for MATLAB® Function Blocks . 5-57

vi Contents

Coverage for Custom C/C++ Code in Simulink Models 5-59
Enable Code Coverage for Custom C/C++ code in MATLAB Function

Blocks, C Caller Blocks, and Stateflow Charts 5-59
Code Coverage for S-Functions . 5-59

View Coverage Results for Custom C/C++ Code in S-Function Blocks . . 5-61

Coverage for S-Functions . 5-65

Model Coverage for Stateflow Charts . 5-67
How Model Coverage Reports Work for Stateflow Charts 5-67
Specify Coverage Report Settings for Stateflow Charts 5-67
Cyclomatic Complexity for Stateflow Charts . 5-67
Decision Coverage for Stateflow Charts . 5-68
Condition Coverage for Stateflow Charts . 5-70
MCDC Coverage for Stateflow Charts . 5-70
Relational Boundary Coverage for Stateflow Charts 5-71
Simulink Design Verifier Coverage for Stateflow Charts 5-71
Model Coverage Reports for Stateflow Charts . 5-72
Model Coverage for Stateflow State Transition Tables 5-79
Model Coverage for Stateflow Atomic Subcharts 5-80
Model Coverage for Stateflow Truth Tables . 5-81
Model Coverage Display for Stateflow Charts . 5-85
Code Coverage for C/C++ code in Stateflow Charts 5-87

Results Review
6

Types of Coverage Reports . 6-2
Model Summary Report . 6-2
Model Reference Coverage Report . 6-3
External MATLAB File Coverage Report . 6-3
Subsystem Coverage Report . 6-7
Code Coverage Report . 6-9

Top-Level Model Coverage Report . 6-10
Analysis Information . 6-10
Aggregated Tests . 6-11
Coverage Summary . 6-12
Details . 6-13
Cyclomatic Complexity . 6-21
Decisions Analyzed . 6-23
Conditions Analyzed . 6-24
MCDC Analysis . 6-24
Cumulative Coverage . 6-25
N-Dimensional Lookup Table . 6-27
Block Reduction . 6-31
Relational Boundary . 6-32
Saturate on Integer Overflow Analysis . 6-34
Signal Range Analysis . 6-35
Signal Size Coverage for Variable-Dimension Signals 6-36
Simulink Design Verifier Coverage . 6-37

vii

Export Model Coverage Web View . 6-39

Excluding Model Objects from Coverage
7

Coverage Filtering . 7-2
When to Use Coverage Filtering . 7-2
What Is Coverage Filtering? . 7-2

Coverage Filter Rules and Files . 7-4
What Is a Coverage Filter Rule? . 7-4
What Is a Coverage Filter File? . 7-4

Model Objects to Filter from Coverage . 7-5

Create, Edit, and View Coverage Filter Rules . 7-6
Create and Edit Coverage Filter Rules . 7-6
Save Coverage Filter to File . 7-8
Create New Coverage Filter File . 7-8
Load Coverage Filter File . 7-8
Remove Applied Coverage Filter . 7-9
Manage Applied filters by Using the Simulink Test Manager 7-9
Update the Report with the Current Filter Settings 7-9
View Coverage Filter Rules in Your Model . 7-9

Applied filters section of the coverage Results Explorer 7-10

Creating and Using Coverage Filters . 7-11

Automating Model Coverage Tasks
8

Automating Model Coverage Tasks . 8-2
Collect Coverage Data Using a Script . 8-2
Differences between sim and the Run Button . 8-3
Collecting Coverage with Simulink Test . 8-3

Retrieve Coverage Details from Results . 8-4
Analyze Coverage Data Using A Script . 8-4
Coverage Information Functions . 8-6

Command Line Verification Tutorial . 8-7

Extracting Detailed Information from Coverage Data 8-16

Operations on Coverage Data . 8-24

Record Coverage in Parallel Simulations by Using Parsim 8-30

viii Contents

Filter Coverage Results Using a Script . 8-33

Component Verification
9

Component Verification . 9-2
Simulink Coverage Tools for Component Verification 9-2
Workflow for Component Verification . 9-2
Verify a Component Independently of the Container Model 9-4
Verify a Model Block in the Context of the Container Model 9-4

Fix Requirements-Based Testing Issues . 9-6

Verification and Validation
10

Test Model Against Requirements and Report Results 10-2
Requirements – Test Traceability Overview . 10-2
Display the Requirements . 10-2
Link Requirements to Tests . 10-3
Run the Test . 10-4
Report the Results . 10-5

Analyze a Model for Standards Compliance and Design Errors 10-7
Standards and Analysis Overview . 10-7
Check Model for Style Guideline Violations and Design Errors 10-7

Perform Functional Testing and Analyze Test Coverage 10-9
Incrementally Increase Test Coverage Using Test Case Generation 10-9

Analyze Code and Test Software-in-the-Loop . 10-12
Code Analysis and Testing Software-in-the-Loop Overview 10-12
Analyze Code for Defects, Metrics, and MISRA C:2012 10-12

Create Back-to-back Tests Using Enhanced MCDC 10-18
Set Up Test Inputs and Verification Strategy . 10-18

Create and Run Back-to-Back Tests using Enhanced MCDC 10-20

ix

Model Coverage Definition

• “Model Coverage” on page 1-2
• “Types of Model Coverage” on page 1-3
• “Simulink Optimizations and Model Coverage” on page 1-9

1

Model Coverage
Model coverage helps you validate your model tests by measuring how thoroughly the model objects
are tested. Model coverage calculates how much a model test case exercises simulation pathways
through a model. It is a measure of how thoroughly a test case tests a model and the percentage of
pathways that a test case exercises.

Model coverage analyzes the execution of the following types of model objects that directly or
indirectly determine simulation pathways through your model:

• Simulink® blocks
• Models referenced in Model blocks
• The states and transitions of Stateflow® charts

During a simulation run, the tool records the behavior of the covered objects, states, and transitions.
At the end of the simulation, the tool reports the extent to which the run exercised potential
simulation pathways through each covered object in the model.

For the types of coverage that model coverage performs, see “Types of Model Coverage” on page 1-
3. For an example of a model coverage report, see “Top-Level Model Coverage Report” on page 6-
10.

The Simulink Coverage™ software can only collect model coverage for a model if its simulation mode
is set to Normal. If the simulation mode is set to any other mode, model coverage is not measured
during simulation.

If you have an Embedded Coder® license, you can also measure code coverage for code generated
from models in software-in-the-loop (SIL) mode or processor-in-the-loop (PIL) mode. For the types of
coverage that code coverage performs, see “Types of Code Coverage” on page 4-2. For an example
of how to enable code coverage, see “Code Coverage for Models in Software-in-the-Loop (SIL) Mode
and Processor-in-the-Loop (PIL) Mode” on page 4-6

1 Model Coverage Definition

1-2

Types of Model Coverage
Simulink Coverage can perform several types of coverage analysis.

In this section...
“Execution Coverage (EC)” on page 1-3
“Decision Coverage (DC)” on page 1-3
“Condition Coverage (CC)” on page 1-3
“Modified Condition/Decision Coverage (MCDC)” on page 1-4
“Cyclomatic Complexity” on page 1-4
“Lookup Table Coverage” on page 1-5
“Signal Range Coverage” on page 1-5
“Signal Size Coverage” on page 1-5
“Objectives and Constraints Coverage” on page 1-6
“Saturate on Integer Overflow Coverage” on page 1-7
“Relational Boundary Coverage” on page 1-7

Execution Coverage (EC)
Execution coverage is the most basic form of coverage. For each item, execution coverage determines
whether the item is executed during simulation.

Decision Coverage (DC)
Decision coverage analyzes elements that represent decision points in a model, such as a Switch
block or Stateflow states. For each item, decision coverage determines the percentage of the total
number of simulation paths through the item that the simulation traversed.

For an example of decision coverage data in a model coverage report, see “Decisions Analyzed” on
page 6-23.

Condition Coverage (CC)
Condition coverage analyzes blocks that output the logical combination of their inputs (for example,
the Logical Operator block) and Stateflow transitions. A test case achieves full coverage when it
causes each input to each instance of a logic block in the model and each condition on a transition to
be true at least once during the simulation, and false at least once during the simulation. Condition
coverage analysis reports whether the test case fully covered the block for each block in the model.

When you collect coverage for a model, you may not be able to achieve 100% condition coverage. For
example, if you specify to short-circuit logic blocks, by selecting Treat Simulink Logic blocks as
short-circuited in the Coverage pane in the Configuration Parameters, you might not be able to
achieve 100% condition coverage for that block. See “MCDC Analysis” on page 6-24 for more
information.

For an example of condition coverage data in a model coverage report, see “Conditions Analyzed” on
page 6-24.

 Types of Model Coverage

1-3

Modified Condition/Decision Coverage (MCDC)
Modified condition/decision coverage analysis by the Simulink Coverage software extends the
decision and condition coverage capabilities. It analyzes blocks that output the logical combination of
their inputs and Stateflow transitions to determine the extent to which the test case tests the
independence of logical block inputs and transition conditions.

• A test case achieves full coverage for a block when a change in one input, independent of any
other inputs, causes a change in the block output.

• A test case achieves full coverage for a Stateflow transition when there is at least one time when a
change in the condition triggers the transition for each condition.

If your model contains blocks that define expressions that have different types of logical operators
and more than 12 conditions, the software cannot record MCDC coverage.

Because the Simulink Coverage MCDC coverage may not achieve full decision or condition coverage,
you can achieve 100% MCDC coverage without achieving 100% decision coverage.

Some Simulink objects support MCDC coverage, some objects support only condition coverage, and
some objects support only decision coverage. The table in “Model Objects That Receive Coverage” on
page 2-2 lists which objects receive which types of model coverage. For example, the
Combinatorial Logic block can receive decision coverage and condition coverage, but not MCDC
coverage.

To achieve 100% MCDC coverage for your model, as defined by the DO-178C/DO-331 standard, in the
Coverage pane of the Configuration Parameters, select “Modified Condition/Decision Coverage
(MCDC)” on page 1-4 as the Structural coverage level.

When you collect coverage for a model, you may not be able to achieve 100% MCDC coverage. For
example, if you specify to short-circuit logic blocks, you may not be able to achieve 100% MCDC
coverage for that block.

If you run the test cases independently and accumulate all the coverage results, you can determine if
your model adheres to the modified condition and decision coverage standard. For more information
about the DO-178C/DO-331 standard, see “DO-178C/DO-331 Checks” (Simulink Check).

For an example of MCDC coverage data in a model coverage report, see “MCDC Analysis” on page 6-
24. For an example of accumulated coverage results, see “Cumulative Coverage” on page 6-25.

Cyclomatic Complexity
Cyclomatic complexity is a measure of the structural complexity of a model. It approximates the
McCabe complexity measure for code generated from the model. The complexity measure can be
different for the generated code than for the model due to code features that this analysis does not
consider, such as consolidated logic and error checks.

To compute the cyclomatic complexity of an object (such as a block, chart, or state), model coverage
uses the following formula:

c = ∑
1

N
(on− 1)

N is the number of decision points that the object represents and on is the number of outcomes for
the nth decision point. The calculation considers a vectorized operation or a Multiport switch block as

1 Model Coverage Definition

1-4

a single decision point. The tool adds 1 to the complexity number for atomic subsystems and
Stateflow charts.

For an example of cyclomatic complexity data in a model coverage report, see “Cyclomatic
Complexity” on page 6-21.

Lookup Table Coverage
Lookup table coverage (LUT) examines blocks, such as the 1-D Lookup Table block, that output
information from inputs in a table of inputs and outputs, interpolating between or extrapolating from
table entries. Lookup table coverage records the frequency that table lookups use each interpolation
interval. A test case achieves full coverage when it executes each interpolation and extrapolation
interval at least once. For each lookup table block in the model, the coverage report displays a
colored map of the lookup table, indicating each interpolation. If the total number of breakpoints of
an n-D Lookup Table block exceeds 1,500,000, the software cannot record coverage for that block.

For an example of lookup table coverage data in a model coverage report, see “N-Dimensional
Lookup Table” on page 6-27.

Note Configure lookup table coverage only at the start of a simulation. If you tune a parameter that
affects lookup table coverage at run time, the coverage settings for the affected block are not
updated.

Signal Range Coverage
Signal range coverage records the minimum and maximum signal values at each block in the model,
as measured during simulation. Only blocks with output signals receive signal range coverage.

The software does not record signal range coverage for control signals, signals used by one block to
initiate execution of another block. See “Control Signals”.

If the total number of signals in your model exceeds 65535, or your model contains a signal whose
width exceeds 65535, the software cannot record signal range coverage.

For an example of signal range coverage data in a model coverage report, see “Signal Range
Analysis” on page 6-35.

Note When you create cumulative coverage for reusable subsystems or Stateflow constructs with
single range coverage, the cumulative coverage has the largest possible range of signal values. For
more information, see “Obtain Cumulative Coverage for Reusable Subsystems and Stateflow®
Constructs” on page 5-34.

Signal Size Coverage
Signal size coverage records the minimum, maximum, and allocated size for all variable-size signals
in a model. Only blocks with variable-size output signals are included in the report.

If the total number of signals in your model exceeds 65535, or your model contains a signal whose
width exceeds 65535, the software cannot record signal size coverage.

 Types of Model Coverage

1-5

For an example of signal size coverage data in a model coverage report, see “Signal Size Coverage
for Variable-Dimension Signals” on page 6-36.

For more information about variable-size signals, see “Variable-Size Signal Basics”.

Objectives and Constraints Coverage
The Simulink Coverage software collects model coverage data for the following Simulink Design
Verifier™ blocks and MATLAB® for code generation functions:

Simulink Design Verifier blocks MATLAB for code generation functions
Test Condition sldv.condition
Test Objective sldv.test
Proof Assumption sldv.assume
Proof Objective sldv.prove

If you do not have a Simulink Design Verifier license, you can collect model coverage for a model that
contains these blocks or functions, but you cannot analyze the model using the Simulink Design
Verifier software.

By adding one or more Simulink Design Verifier blocks or functions into your model, you can:

• Check the results of a Simulink Design Verifier analysis, run generated test cases, and use the
blocks to observe the results.

• Define model requirements using the Test Objective block and verify the results with model
coverage data that the software collected during simulation.

• Analyze the model, create a test harness, and simulate the harness with the Test Objective block
to collect model coverage data.

• Analyze the model and use the Proof Assumption block to verify any counterexamples that the
Simulink Design Verifier identifies.

If you specify to collect Simulink Design Verifier coverage:

• The software collects coverage for the Simulink Design Verifier blocks and functions.
• The software checks the data type of the signal that links to each Simulink Design Verifier block. If

the signal data type is fixed point, the block parameter must also be fixed point. If the signal data
type is not fixed point, the software tries to convert the block parameter data type. If the software
cannot convert the block parameter data type, the software reports an error and you must
explicitly assign the block parameter data type to match the signal.

• If your model contains a Verification Subsystem block, the software only records coverage for
Simulink Design Verifier blocks in the Verification Subsystem block; it does not record coverage
for any other blocks in the Verification Subsystem.

If you do not specify to collect Simulink Design Verifier coverage, the software does not check the
data types for any Simulink Design Verifier blocks and functions in your model and does not collect
coverage.

For an example of coverage data for Simulink Design Verifier blocks or functions in a model coverage
report, see “Simulink Design Verifier Coverage” on page 6-37.

1 Model Coverage Definition

1-6

Saturate on Integer Overflow Coverage
Saturate on integer overflow coverage examines blocks, such as the Abs block, with the Saturate on
integer overflow parameter selected. Only blocks with this parameter selected receive saturate on
integer overflow coverage.

Saturate on integer overflow coverage records the number of times the block saturates on integer
overflow.

A test case achieves full coverage when the blocks saturate on integer overflow at least once and
does not saturate at least once.

For an example of saturate on integer overflow coverage data in a model coverage report, see
“Saturate on Integer Overflow Analysis” on page 6-34.

Relational Boundary Coverage
Relational boundary coverage examines blocks, Stateflow charts, and MATLAB function blocks that
have an explicit or implicit relational operation.

• Blocks such as Relational Operator and If have an explicit relational operation.
• Blocks such as Abs and Saturation have an implicit relational operation.

For these model objects, the metric records whether a simulation tests the relational operation with:

• Equal operand values.

This part of relational boundary coverage applies only if both operands are integers or fixed-point
numbers.

• Operand values that differ by a certain tolerance.

This part of relational boundary coverage applies to all operands. For integer and fixed-point
operands, the tolerance is fixed. For floating-point operands, you can either use a predefined
tolerance or you can specify your own tolerance.

The tolerance value depends on the data type of both the operands. If both operands have the same
type, the tolerance follows the following rules:

Data Type of Operand Tolerance
Floating point, such as single or double max(absTol, relTol* max(|lhs|,|rhs|))

• absTol is an absolute tolerance value you
specify. Default is 1e-05.

• relTol is a relative tolerance value you
specify. Default is 0.01.

• lhs is the left operand and rhs the right
operand.

• max(x,y) returns x or y, whichever is
greater.

 Types of Model Coverage

1-7

Data Type of Operand Tolerance
Fixed point Value corresponding to least significant bit. For

more information, see “Precision” (Fixed-Point
Designer). To find the precision value, use the
lsb (Fixed-Point Designer) function.

Integer 1
Boolean N/A
Enum N/A

If the two operands have different types, the tolerance follows the rules for the stricter type. If one of
the operands is boolean, the tolerance follows the rules for the other operand. The strictness
decreases in this order:

1 Floating point
2 Fixed point
3 Integer

If both operands are fixed point but have different precision, the smaller value of precision is used as
tolerance.

You specify the value of absolute and relative tolerances for relational boundary coverage of floating
point inputs when you select this metric in the Coverage metrics section in the“Coverage Pane” on
page 3-2 of the Configuration Parameters dialog box.

For more information on:

• How this coverage metric appears in reports, see “Relational Boundary” on page 6-32.
• Which model objects receive this coverage, see the table in “Model Objects That Receive

Coverage” on page 2-2.
• How to obtain coverage results from the MATLAB command-line, see “Collect Relational Boundary

Coverage for Supported Block in Model”.

1 Model Coverage Definition

1-8

Simulink Optimizations and Model Coverage
In the Configuration Parameters dialog box, there are three Simulink optimization parameters that
can affect your model coverage data:

Inlined Parameters
To transform tunable model parameters into constant values for code generation, in the Configuration
Parameters dialog box, on the Math and Data Types pane, set Default parameter behavior to
Inlined.

When the parameters are transformed into constants, Simulink may eliminate certain decisions in
your model. You cannot achieve coverage for eliminated decision, so the coverage report displays 0/0
for those decisions.

Block Reduction
To achieve faster execution during model simulation and in generated code, in the Configuration
Parameters dialog box, select the Block reduction parameter. The Simulink software collapses
certain groups of blocks into a single, more efficient block, or removes them entirely.

One of the model coverage options, Force block reduction off, allows you to ignore the Block
reduction parameter when collecting model coverage.

If you do not select the Block reduction parameter, or if you select Force block reduction off, the
Simulink Coverage software provides coverage data for every block in the model that collects
coverage.

If you select the Block reduction parameter and do not set Force block reduction off, the
coverage report lists the reduced blocks that would have collected coverage.

Conditional Input Branch Execution
The Conditional input branch execution parameter can cause lower than expected Simulink
Coverage results.

 Simulink Optimizations and Model Coverage

1-9

Case 1: Upstream Switch Block Completely Optimized Out

A Constant block set to false connected to the control input on C_Switch2 causes the true case of
C_Switch2 to not occur. Conditional input branch execution optimizes C_Switch1 out as a result.
Simulink Coverage reports 0% coverage on C_Switch1.

Because the C_Switch1 block is dead logic, the coverage report generates a Blocks Eliminated from
Coverage Analysis section.

Case 2: Upstream Switch Block Partially Optimized Out

A Step block converted to the boolean data type outputs false and true before and after the Step
time, respectively.

1 Model Coverage Definition

1-10

Disabling Conditional input branch execution provides full coverage. Enabling Conditional input
branch execution provides partial coverage on A_Switch1 because A_Switch1 does not see a false
case at the same time that A_Switch2 sees a true case. In other words, either both Switch blocks are
true, or both are false. The false case of A_Switch1 does not affect the model. The coverage report
correctly reports 50% coverage on A_Swtch1.

Address Incomplete Coverage

You can address incomplete coverage in models where the Conditional input branch execution
parameter is selected by:

• Revising the model design. Incomplete coverage due to Conditional input branch execution
could indicate a model design flaw.

• Justifying the missing coverage if the inaccessible logic in the model is intentional.
• Providing a more robust test case that can access all of the switch decisions.
• Clearing Conditional input branch execution. This eliminates the issue of incomplete Switch

coverage, but does not address the inaccessible logic.

For usage details, see “Conditional input branch execution”.

Limitations

Conditional input branch execution does not apply to Stateflow charts.

 Simulink Optimizations and Model Coverage

1-11

Model Objects That Receive Model
Coverage

2

Model Objects That Receive Coverage
Certain Simulink objects can receive any type of model coverage. Other Simulink objects can receive
only certain types of coverage, as the following table shows. Click a link in the first column to get
more detailed information about coverage for specific model objects.

All Simulink objects can receive Execution coverage, except blocks that are not instrumented in
model coverage:

• Merge Blocks
• Scope Blocks
• Outport Blocks
• Inport Blocks
• Width Blocks
• Display Blocks

For Stateflow states, events, and state temporal logic decisions, model coverage provides decision
coverage. For Stateflow transitions, model coverage provides decision, condition, and MCDC
coverage. Model coverage provides condition and MCDC coverage for logical expressions in
assignment statements in states and transitions. For more information, see “Model Coverage for
Stateflow Charts” on page 5-67.

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Abs” on page 2-6
“Bias” on page 2-
6

“Combinatorial
Logic” on page 2-
6

“Compare to
Constant” on page
2-7

“Compare to Zero”
on page 2-7

“Data Type
Conversion” on
page 2-7

“Dead Zone” on
page 2-7

“Direct Lookup
Table (n-D)” on
page 2-8

“Discrete Filter” on
page 2-9

2 Model Objects That Receive Model Coverage

2-2

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Discrete FIR
Filter” on page 2-
9

“Discrete-Time
Integrator” on page
2-9 (when
saturation limits are
enabled or reset)

“Discrete Transfer
Fcn” on page 2-10

“Dot Product” on
page 2-10

“Enabled
Subsystem” on page
2-10

“Enabled and
Triggered
Subsystem” on page
2-10

“Fcn” on page 2-
11

“For Iterator, For
Iterator Subsystem”
on page 2-12

“Gain” on page 2-
12

“If, If Action
Subsystem” on page
2-12

“Index Vector” on
page 2-12

“Interpolation
Using Prelookup”
on page 2-13

“Library-Linked
Objects” on page 2-
13

“Logical Operator”
on page 2-13

“1-D Lookup Table”
on page 2-14

 Model Objects That Receive Coverage

2-3

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“2-D Lookup Table”
on page 2-14

“n-D Lookup Table”
on page 2-15

“Math Function” on
page 2-15

“MATLAB Function”
on page 2-15

“MATLAB System”
on page 2-15

“MinMax” on page
2-15

“Model” on page 2-
16

See also “Triggered
Models” on page 2-
23.
“Multiport Switch”
on page 2-16

“Observer Model”
on page 2-17
“PID Controller, PID
Controller (2 DOF)”
on page 2-17

“Product” on page
2-17

“Proof Assumption”
on page 2-17

“Proof Objective”
on page 2-17

“Rate Limiter” on
page 2-18

(Relative to
slew rates)

“Relational
Operator” on page
2-18

“Relay” on page 2-
19

2 Model Objects That Receive Model Coverage

2-4

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“C/C++ S-
Function” on page
2-19

“Saturation” on
page 2-20

“Saturation
Dynamic” on page
2-21

“Simulink Design
Verifier Functions in
MATLAB Function
Blocks” on page 2-
21

Stateflow charts on
page 5-67

Stateflow state
transition tables on
page 5-79

“Sqrt, Signed Sqrt,
Reciprocal Sqrt” on
page 2-21

“Sum, Add,
Subtract, Sum of
Elements” on page
2-21

“Switch” on page 2-
21

“SwitchCase,
SwitchCase Action
Subsystem” on page
2-22

“Test Condition” on
page 2-22

“Test Objective” on
page 2-22

“Triggered Models”
on page 2-23

“Triggered
Subsystem” on page
2-23

“Truth Table” on
page 2-24

 Model Objects That Receive Coverage

2-5

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Unary Minus” on
page 2-24

“Weighted Sample
Time Math” on page
2-24

“While Iterator,
While Iterator
Subsystem” on page
2-24

Abs
The Abs block receives decision coverage. Decision coverage is based on:

• Input to the block being less than zero.
• Data type of the input signal.

For input to the block being less than zero, the decision coverage measures:

• The number of time steps that the block input is less than zero, indicating a true decision.
• The number of time steps the block input is not less than zero, indicating a false decision.

If you select the Saturate on integer overflow coverage metric, the Abs block receives saturate on
integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-7.

If the input data type to the Abs block is uint8, uint16, or uint32, the Simulink Coverage software
reports no coverage for the block. The software sets the block output equal to the block input without
making a decision. If the input data type to the Abs block is Boolean, an error occurs.

The Abs block contains an implicit comparison of the input with zero. Therefore, if you select the
Relational Boundary coverage metric, the Abs block receives relational boundary coverage. For
more information, see “Relational Boundary Coverage” on page 1-7.

Bias
If you select the Saturate on integer overflow coverage metric, the Bias block receives saturate on
integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-7.

Combinatorial Logic
The Combinatorial Logic block receives decision and condition coverage. Decision coverage is based
on achieving each output row of the truth table. The decision coverage measures the number of time
steps that each output row of the truth table is set to the block output.

The condition coverage measures the number of time steps that each input is false (equal to zero) and
the number of times each input is true (not equal to zero). If the Combinatorial Logic block has a

2 Model Objects That Receive Model Coverage

2-6

single input element, the Simulink Coverage software reports only decision coverage, because
decision and condition coverage are equivalent.

If all truth table values are set to the block output for at least one time step, decision coverage is
100%. Otherwise, the software reports the coverage as the number of truth table values output
during at least one time step, divided by the total number of truth table values. Because this block
always has at least one value in the truth table as output, the minimum coverage reported is one
divided by the total number of truth table values.

If all block inputs are false for at least one time step and true for at least one time step, condition
coverage is 100%. Otherwise, the software reports the coverage as achieving a false value at each
input for at least one time step, plus achieving a true value for at least one time step, divided by two
raised to the power of the total number of inputs (i.e., 2^number_of_inputs). The minimum coverage
reported is the total number of inputs divided by two raised to the power of the total number of
inputs.

Compare to Constant
The Compare to Constant block receives condition coverage.

Condition coverage measures:

• the number of times that the comparison between the input and the specified constant was true.
• the number of times that the comparison between the input and the specified constant was false.

The Compare to Constant block contains a comparison of the input with a constant. Therefore, if you
select the Relational Boundary coverage metric, the Compare to Constant block receives relational
boundary coverage. For more information, see “Relational Boundary Coverage” on page 1-7.

Compare to Zero
The Compare to Zero block receives condition coverage.

Condition coverage measures:

• the number of times that the comparison between the input and zero was true.
• the number of times that the comparison between the input and zero was false.

The Compare to Zero block contains a comparison of the input with zero. Therefore, if you select the
Relational Boundary coverage metric, the Compare to Zero block receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-7.

Data Type Conversion
If you select the Saturate on integer overflow coverage metric, the Data Type Conversion block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7.

Dead Zone
The Dead Zone block receives decision coverage. The Simulink Coverage software reports decision
coverage for these parameters:

 Model Objects That Receive Coverage

2-7

• Start of dead zone
• End of dead zone

The Start of dead zone parameter specifies the lower limit of the dead zone. For the Start of dead
zone parameter, decision coverage measures:

• The number of time steps that the block input is greater than or equal to the lower limit,
indicating a true decision.

• The number of time steps that the block input is less than the lower limit, indicating a false
decision.

The End of dead zone parameter specifies the upper limit of the dead zone. For the End of dead
zone, decision coverage measures:

• The number of time steps that the block input is greater than the upper limit, indicating a true
decision.

• The number of time steps that the block input is less than or equal to the upper limit, indicating a
false decision.

When the upper limit is true, the software does not measure Start of dead zone coverage for that
time step. Therefore, the total number of Start of dead zone decisions equals the number of time
steps that the End of dead zone is false.

If you select the Saturate on integer overflow coverage metric, the Dead Zone block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7.

The Dead Zone block contains an implicit comparison of the input with an upper and lower limit
value. Therefore, if you select the Relational Boundary coverage metric, the Dead Zone block
receives relational boundary coverage. For more information, see “Relational Boundary Coverage” on
page 1-7.

Direct Lookup Table (n-D)
The Direct Lookup Table (n-D) block receives lookup table coverage. For an n-dimensional lookup
table, the number of output break points is the product of all the number of break points for each
table dimension.

Lookup table coverage measures:

• The number of times during simulation that each combination of dimension input values is
between each of the break points.

• The number of times during simulation that each combination of dimension input values is below
the lowest break point and above the highest break point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the product of the number of
break points in each table dimension plus one. In the coverage report, an increasing white-to-green
color scale, with six evenly spaced data ranges starting with zero, indicates the number of time steps
that the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

2 Model Objects That Receive Model Coverage

2-8

Discrete Filter
If you select the Saturate on integer overflow coverage metric, the Discrete Filter block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7.

Discrete FIR Filter
If you select the Saturate on integer overflow coverage metric, the Discrete FIR Filter block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7.

Discrete-Time Integrator
The Discrete-Time Integrator block receives decision coverage. The Simulink Coverage software
reports decision coverage for these parameters:

• External reset
• Limit output

If you set External reset to none, the Simulink Coverage software does not report decision coverage
for the reset decision. Otherwise, the decision coverage measures:

• The number of time steps that the block output is reset, indicating a true decision.
• The number of time steps that the block output is not reset, indicating a false decision.

If you do not select Limit output, the software does not report decision coverage for that decision.
Otherwise, the software reports decision coverage for the Lower saturation limit and the Upper
saturation limit.

For the Upper saturation limit, decision coverage measures:

• The number of time steps that the integration result is greater than or equal to the upper limit,
indicating a true decision.

• The number of time steps that the integration result is less than the upper limit, indicating a false
decision.

For the Lower saturation limit, decision coverage measures

• The number of time steps that the integration result is less than or equal to the lower limit,
indicating a true decision.

• The number of time steps that the integration result is greater than the lower limit, indicating a
false decision.

For a time step when the upper limit is true, the software does not measure Lower saturation limit
coverage. Therefore, the total number of lower limit decisions equals the number of time steps that
the upper limit is false.

If you select the Saturate on integer overflow coverage metric, the Discrete-Time Integrator block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7.

 Model Objects That Receive Coverage

2-9

Discrete Transfer Fcn
If you select the Saturate on integer overflow coverage metric, the Discrete Transfer Fcn block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7.

Dot Product
If you select the Saturate on integer overflow coverage metric, the Dot Product block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7.

Enabled Subsystem
The Enabled Subsystem block receives decision, condition, and MCDC coverage.

Decision coverage measures:

• The number of time steps that the block is enabled, indicating a true decision.
• The number of time steps that the block is disabled, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%.

The Simulink Coverage software measures condition coverage for the enable input only if the enable
input is a vector. For the enable input, condition coverage measures the number of time steps each
element of the enable input is true and the number of time steps each element of the enable input is
false. The software reports condition coverage based on the total number of possible conditions and
how many are true for at least one time step and how many are false for at least one time step.

The software measures MCDC coverage for the enable input only if the enable input is a vector.
Because the enable of the subsystem is an OR of the vector inputs, MCDC coverage is 100% if, during
at least one time step, each vector enable input is exclusively true and if, during at least one time
step, all vector enable inputs are false. For MCDC coverage measurement, the software treats each
element of the vector as a separate condition.

Enabled and Triggered Subsystem
The Enabled and Triggered Subsystem block receives decision, condition, and MCDC coverage.
Decision coverage measures:

• The number of time steps that a trigger edge occurs while the block is enabled, indicating a true
decision.

• The number of time steps that a trigger edge does not occur while the block is enabled, or the
block is disabled, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%.

The software measures condition coverage for the enable input and for the trigger input separately:

2 Model Objects That Receive Model Coverage

2-10

• For the enable input, condition coverage measures the number of time steps the enable input is
true and the number of time steps the enable input is false.

• For the trigger input, condition coverage measures the number of time steps the trigger edge
occurs, indicating true, and the number of time steps the trigger edge does not occur, indicating
false.

The software reports condition coverage based on the total number of possible conditions and how
many conditions are true for at least one time step and how many are false for at least one time step.
The software treats each element of a vector as a separate condition coverage measurement.

The software measures MCDC coverage for the enable input and for the trigger input in combination.
Because the enable input of the subsystem is an AND of these two inputs, MCDC coverage is 100% if
all of the following occur:

• During at least one time step, both inputs are true.
• During at least one time step, the enable input is true and the trigger edge is false.
• During one time step, the enable input is false and the trigger edge is true.

The software treats each vector element as a separate MCDC coverage measurement. It measures
each trigger edge element against each enable input element. However, if the number of elements in
both the trigger and enable inputs exceeds 12, the software does not report MCDC coverage.

Fcn
The Fcn block receives condition and MCDC coverage. The Simulink Coverage software reports
condition or MCDC coverage for Fcn blocks only if the top-level operator is Boolean (&&, ||, or !).

Condition coverage is based on input values or arithmetic expressions that are inputs to Boolean
operators in the block. The condition coverage measures:

• The number of time steps that each input to a Boolean operator is true (not equal to zero).
• The number of time steps that each input to a Boolean operator is false (equal to zero).

If all Boolean operator inputs are false for at least one time step and true for at least one time step,
condition coverage is 100%. Otherwise, the software reports condition coverage based on the total
number of possible conditions and how many are true for at least one time step and how many are
false for at least one time step.

The software measures MCDC coverage for Boolean expressions within the Fcn block. If, during at
least one time step, each condition independently sets the output of the expression to true and if,
during at least one time step, each condition independently sets the output of the expression to false,
MCDC coverage is 100%. Otherwise, the software reports MCDC coverage based on the total number
of possible conditions and how many times each condition independently sets the output to true
during at least one time step and how many conditions independently set the output to false during at
least one time step.

If the Fcn block contains a relational operation and you select the Relational Boundary coverage
metric, the Fcn block receives relational boundary coverage. For more information, see “Relational
Boundary Coverage” on page 1-7.

 Model Objects That Receive Coverage

2-11

For Iterator, For Iterator Subsystem
The For Iterator block and For Iterator Subsystem receive decision coverage. The Simulink Coverage
software measures decision coverage for the loop condition value, which is determined by one of the
following:

• The iteration value being at or below the iteration limit, indicated as true.
• The iteration value being above the iteration limit, indicated as false.

The software reports the total number of times that each loop condition evaluates to true and to false.
If the loop condition evaluates to true at least once and false at least once, decision coverage is 100%.
If no loop conditions are true, or if no loop conditions are false, decision coverage is 50%.

Gain
If you select the Saturate on integer overflow coverage metric, the Gain block receives saturate on
integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-7.

If, If Action Subsystem
The If block that causes an If Action Subsystem to execute receives condition, decision, and MCDC
coverage:

• The software measures decision coverage for the if condition and all elseif conditions defined
in the If block.

• If the if condition or any of the elseif conditions contains a logical expression with multiple
conditions, such as u1 & u2 & u3, the software also measures condition and MCDC coverage for
each condition in the expression, u1, u2, and u3 in the preceding example.

The software does not directly measure the else condition. When there are no elseif conditions,
the else condition is the direct complement of the if condition, or the else condition is the direct
complement of the last elseif condition.

The software reports the total number of time steps that each if and elseif condition evaluates to
true and to false. If the if or elseif condition evaluates to true at least once, and evaluates to false
at least once, decision coverage is 100%. If no if or elseif conditions are true, or if no if or
elseif conditions are false, decision coverage is 50%. If the previous if or elseif condition never
evaluates as false, an elseif condition can have 0% decision coverage.

The If block contains a comparison between its inputs. Therefore, if you select the Relational
Boundary coverage metric, the If block receives relational boundary coverage. For more information,
see “Relational Boundary Coverage” on page 1-7.

Index Vector
The Index Vector block receives decision coverage based on passing each element of the vector signal
input to the output of the block.

If each vector index is passed to the block output for at least one time step, decision coverage is
100%. Otherwise, Simulink Coverage reports coverage as the percentage of the total number of
vector indices in the input signal that passed through to the output.

2 Model Objects That Receive Model Coverage

2-12

If you select the Saturate on integer overflow coverage metric, the Index Vector block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7.

Interpolation Using Prelookup
The Interpolation Using Prelookup block receives lookup table coverage. For an n-D lookup table, the
number of output break points equals the product of all the number of break points for each table
dimension. The lookup table coverage measures:

• The number of times during simulation that each combination of dimension input values is
between each of the break points.

• The number of times during simulation that each combination of dimension input values is below
the lowest break point and above the highest break point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the product of the number of
break points in each table dimension plus one. In the coverage report, an increasing white-to-green
color scale, with six evenly spaced data ranges starting with zero, indicates the number of time steps
that the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

If you select the Saturate on integer overflow, the Interpolation Using Prelookup block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

Library-Linked Objects
Simulink blocks and Stateflow charts that are linked to library objects receive the same coverage that
they would receive if they were not linked to library objects. The Simulink Coverage software records
coverage individually for each library object in the model. If your model contains multiple instances of
the same library object, each instance receives its own coverage data.

Logical Operator
The Logical Operator block receives condition and MCDC coverage. The Simulink Coverage software
measures condition coverage for each input to the block. The condition coverage measures:

• The number of time steps that each input is true (not equal to zero).
• The number of time steps that each input is false (equal to zero).

If all block inputs are false for at least one time step and true for at least one time step, the software
condition coverage is 100%. Otherwise, the software reports the condition coverage based on the
total number of possible conditions and how many are true at least one time step and how many are
false at least one time step.

The software measures MCDC coverage for all inputs to the block. If, during at least one time step,
each condition independently sets the output of the block to true and if, during at least one time step,
each condition independently sets the output of the block to false, MCDC coverage is 100%.

 Model Objects That Receive Coverage

2-13

Otherwise, the software reports the MCDC coverage based on the total number of possible conditions
and how many times each one of them independently set the output to true for at least one time step
and how many independently set the output to false for at least one time step.

1-D Lookup Table
The 1-D Lookup Table block receives lookup table coverage; for a one-dimensional lookup table, the
number of input and output break points is equal. Lookup table coverage measures:

• The number of times during simulation that the input and output values are between each of the
break points.

• The number of times during simulation that the input and output values are below the lowest
break point and above the highest break point.

The total number of coverage points for a one-dimensional lookup table is the number of break points
in the table plus one. In the coverage report, an increasing white-to-green color scale, with six evenly
spaced data ranges starting with zero, indicates the number of time steps that the software measures
each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

If you select the Saturate on integer overflow coverage metric, the 1-D Lookup Table block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

2-D Lookup Table
The 2-D Lookup Table block receives lookup table coverage. For a two-dimensional lookup table, the
number of output break points equals the number of row break points multiplied by the number of
column inputs. Lookup table coverage measures:

• The number of times during simulation that each combination of row input and column input
values is between each of the break points.

• The number of times during simulation that each combination of row input and column input
values is below the lowest break point and above the highest break point for each row and
column.

The total number of coverage points for a two-dimensional lookup table is the number of row break
points in the table plus one, multiplied by the number of column break points in the table plus one. In
the coverage report, an increasing white-to-green color scale, with six evenly spaced data ranges
starting with zero, indicates the number of time steps that the software measures each interpolation
or extrapolation point.

If you select the Saturate on integer overflow coverage metric, the 2-D Lookup Table block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

2 Model Objects That Receive Model Coverage

2-14

n-D Lookup Table
The n-D Lookup Table block receives lookup table coverage. For an n-dimensional lookup table, the
number of output break points equals the product of all the number of break points for each table
dimension. Lookup table coverage measures:

• The number of times during simulation that each combination of dimension input values is
between each of the break points.

• The number of times during simulation that each combination of dimension output values is below
the lowest break point and above the highest break point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the product of the number of
break points in each table dimension plus one. In the coverage report, an increasing white-to-green
color scale, with six evenly spaced data ranges starting with zero, indicates the number of time steps
that the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

If you select the Saturate on integer overflow coverage metric, the n-D Lookup Table block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

Math Function
If you select the Saturate on integer overflow coverage metric, the Math Function block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

MATLAB Function
For information about the type of coverage that the Simulink Coverage software reports for the
MATLAB Function block, see “Model Coverage for MATLAB Functions” on page 5-45.

MATLAB System
Simulink Coverage records only Decision, Condition, and MCDC coverage for MATLAB System
blocks.

MinMax
The MinMax block receives decision coverage based on passing each input to the output of the block.

For decision coverage based on passing each input to the output of the block, the coverage measures
the number of time steps that the simulation passes each input to the block output. The number of
decision points is based on the number of inputs to the block and whether they are scalar, vector, or
matrix.

 Model Objects That Receive Coverage

2-15

If all inputs are passed to the block output for at least one time step, the Simulink Coverage software
reports the decision coverage as 100%. Otherwise, the software reports the coverage as the number
of inputs passed to the output during at least one time step, divided by the total number of inputs.

If you select the Saturate on integer overflow coverage metric, the MinMax block receives saturate
on integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-7. The software treats each element of a vector or matrix as a separate coverage
measurement.

Model
The Model block does not receive coverage directly; the model that the block references receives
coverage. If the simulation mode for the referenced model is set to Normal, the Simulink Coverage
software reports coverage for all objects within the referenced model that receive coverage. . If the
simulation mode for the referenced model is set to SIL or PIL and you have Embedded Coder
installed, the Simulink Coverage software reports coverage for the code generated from your
model .If the simulation mode is set to a value other than Normal, SIL, or PIL, the software cannot
measure coverage for the referenced model.

In the Coverage pane of the Configuration Parameters dialog box, select the referenced models for
which you want to report coverage. The software generates a coverage report for each referenced
model you select.

If your model contains multiple instances of the same referenced model, the software records
coverage for all instances of that model where the simulation mode of the Model block is set to
Normal. The coverage report for that referenced model combines the coverage data for all Normal
mode instances of that model.

The coverage reports for all analyzed models in a model reference hierarchy are linked from a
summary report.

Note For details on how to select referenced models to report coverage, see “Referenced Models” on
page 3-3.

Multiport Switch
The Multiport Switch block receives decision coverage based on passing each input, excluding the
first control input, to the output of the block.

For decision coverage based on passing each input, excluding the first control input, to the output of
the block, the coverage measures the number of time steps that each input is passed to the block
output. The number of decision points is based on the number of inputs to the block and whether the
control input is scalar or vector.

If all inputs, excluding the first control input, are passed to the block output for at least one time step,
decision coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of inputs passed to the output during at least one time step, divided by the total number of
inputs minus one.

If you select the Saturate on integer overflow coverage metric, the Multiport Switch block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow

2 Model Objects That Receive Model Coverage

2-16

Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

Observer Model
The Observer Reference block does not receive coverage directly; the Observer model that the block
references receives coverage metrics for the blocks inside that model. Only Observers models in
Normal mode are analyzed for coverage.

You can select Observer models for coverage the same way you select referenced models. For more
information about selecting models for analysis, see “Referenced Models” on page 3-3.

Only Observer models that you reference from the top model are active during a simulation and can
receive coverage. Terminate Function blocks located inside Observer models do not receive coverage.

The coverage results for each Observer model are captured in separate cvdata objects. Each model
referenced from an Observer model is considered an Observer model and has its own cvdata object.
If you record coverage for multiple models in a model reference hierarchy, the results are collected in
a cv.cvdatagroup object. The summary report links to the coverage reports for all analyzed models
in the hierarchy.

PID Controller, PID Controller (2 DOF)
If you select the Saturate on integer overflow coverage metric, the PID Controller and PID
Controller (2 DOF) blocks receive saturate on integer overflow coverage. For more information, see
“Saturate on Integer Overflow Coverage” on page 1-7. The software treats each element of a vector
or matrix as a separate coverage measurement.

Product
If you select the Saturate on integer overflow coverage metric, the Product block receives saturate
on integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-7. The software treats each element of a vector or matrix as a separate coverage
measurement.

Proof Assumption
The Proof Assumption block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier
coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Proof Assumption block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Proof Objective
The Proof Objective block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier

 Model Objects That Receive Coverage

2-17

coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Proof Objective block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Rate Limiter
The Rate Limiter block receives decision coverage. The Simulink Coverage software reports decision
coverage for the Rising slew rate and Falling slew rate parameters.

For the Rising slew rate, decision coverage measures:

• The number of time steps that the block input changes more than or equal to the rising rate,
indicating a true decision.

• The number of time steps that the block input changes less than the rising rate, indicating a false
decision.

For the Falling slew rate, decision coverage measures:

• The number of time steps that the block input changes less than or equal to the falling rate,
indicating a true decision.

• The number of time steps that the block input changes more than the falling rate, indicating a
false decision.

The software does not measure Falling slew rate coverage for a time step when the Rising slew
rate is true. Therefore, the total number of Falling slew rate decisions equals the number of time
steps that the Rising slew rate is false.

If at least one time step is true and at least one time step is false, decision coverage for each of the
two individual decisions for the block is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%. The software treats each element of a vector or matrix as a separate
coverage measurement.

The Rate Limiter block implicitly compares the derivative of the input signal with an upper and lower
limit value. Therefore, if you select the Relational Boundary coverage metric, the Rate Limiter
block receives relational boundary coverage. For more information, see “Relational Boundary
Coverage” on page 1-7.

Relational Operator
The Relational Operator block receives condition coverage.

Condition coverage measures:

• the number of times that the specified relational operation was true.
• the number of times that the specified relational operation was false.

2 Model Objects That Receive Model Coverage

2-18

The Relational Operator block contains a comparison between its inputs. Therefore, if you select the
Relational Boundary coverage metric, the Relational Operator block receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-7.

Relay
The Relay block receives decision coverage. The Simulink Coverage software reports decision
coverage for the Switch on point and the Switch off point parameters.

For the Switch on point, decision coverage measures:

• The number of consecutive time steps that the block input is greater than or equal to the Switch
on point, indicating a true decision.

• The number of consecutive time steps that the block input is less than the Switch on point,
indicating a false decision.

For the Switch off point, decision coverage measures:

• The number of consecutive time steps that the block input is less than or equal to the Switch off
point, indicating a true decision.

• The number of consecutive time steps that the block input is greater than the Switch off point,
indicating a false decision.

The software does not measure Switch off point coverage for a time step when the switch on
threshold is true. Therefore, the total number of Switch off point decisions equals the number of
time steps that the Switch on point is false.

If at least one time step is true and at least one time step is false, decision coverage for each of the
two individual decisions for the block is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%. The software treats each element of a vector or matrix as a separate
coverage measurement.

The Relay block contains an implicit comparison of its second input with a threshold value. Therefore,
if you select the Relational Boundary coverage metric, the Relay block receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-7.

C/C++ S-Function
Model coverage is supported for C/C++ S-Functions. The coverage report for the model contains
results for each instance of an S-Function block in the model. The results for an S-Function block link
to a separate coverage report for the C/C++ code in the block.

To generate coverage report for S-Functions:

1 When creating the S-Functions, enable support for coverage. For more information, see “Make S-
Function Compatible with Model Coverage” on page 5-59.

2 When generating the coverage report, enable support for S-Functions. For more information, see
“Generate Coverage Report for S-Function” on page 5-60.

The following coverage types are reported for S-Functions:

• “Cyclomatic Complexity for Code Coverage” on page 4-4

 Model Objects That Receive Coverage

2-19

• “Condition Coverage for Code Coverage” on page 4-2
• “Decision Coverage for Code Coverage” on page 4-3
• “Modified Condition/Decision Coverage (MCDC) for Code Coverage” on page 4-3
• “Relational Boundary for Code Coverage” on page 4-4
• Percentage of statements covered

The coverage data for S-Function blocks is obtained in the following way:

• The coverage result for a block is a weighted average of the result over all files in the block.

For instance, an S-Function block has two files, file1.c and file2.c. The decision coverage for
file1.c is 75% (3/4 outcomes covered) and that for file2.c is 50% (10/20 outcomes covered).
The decision coverage for the block is 13/24 ≈ 54 %.

• For each file, the coverage result is a weighted average of the result over all functions in the file.
• For each function, the coverage result is a weighted average of the result over all statements in

the function that receive that coverage.

Note Model coverage for S-Functions have the following restrictions:

• Only Level-2 C/C++ S-Functions are supported for coverage. For an example of a level-2 C S-
Function, see “Create a Basic C MEX S-Function”.

• C++ class templates are not instrumented for coverage.

Saturation
The Saturation block receives decision coverage. The Simulink Coverage software reports decision
coverage for the Lower limit and Upper limit parameters.

For the Upper limit, decision coverage measures:

• The number of time steps that the block input is greater than or equal to the upper limit,
indicating a true decision.

• The number of time steps that the block input is less than the upper limit, indicating a false
decision.

For the Lower limit, decision coverage measures:

• The number of time steps that the block input is greater than the lower limit, indicating a true
decision.

• The number of time steps that the block input is less than or equal to the lower limit, indicating a
false decision.

The software does not measure Lower limit coverage for a time step when the upper limit is true.
Therefore, the total number of Lower limit decisions equals the number of time steps that the Upper
limit is false.

If at least one time step is true and at least one time step is false, decision coverage for each of the
two individual decisions for the Saturation block is 100%. If no time steps are true, or if no time steps

2 Model Objects That Receive Model Coverage

2-20

are false, decision coverage is 50%. The software treats each element of a vector or matrix as a
separate coverage measurement.

The Saturation block contains an implicit comparison of the input with an upper and lower limit
value. Therefore, if you select the Relational Boundary coverage metric, the Saturation block
receives relational boundary coverage. For more information, see “Relational Boundary Coverage” on
page 1-7.

Saturation Dynamic
If you select the Saturate on integer overflow coverage metric, the Saturation Dynamic block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

Simulink Design Verifier Functions in MATLAB Function Blocks
The following functions in MATLAB Function blocks receive Simulink Design Verifier coverage:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

Each of these functions evaluates an expression expr, for example, sldv.test(expr), where expr
is any valid Boolean MATLAB expression. Simulink Design Verifier coverage measures the number of
time steps that the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for that function is 100%.
Otherwise, the Simulink Coverage software reports coverage for that function as 0%.

Sqrt, Signed Sqrt, Reciprocal Sqrt
If you select the Saturate on integer overflow coverage metric, the Sqrt, Signed Sqrt, and
Reciprocal Sqrt blocks receive saturate on integer overflow coverage. For more information, see
“Saturate on Integer Overflow Coverage” on page 1-7. The software treats each element of a vector
or matrix as a separate coverage measurement.

Sum, Add, Subtract, Sum of Elements
If you select the Saturate on integer overflow coverage metric, the Sum, Add, Subtract, and Sum of
Elements blocks receive saturate on integer overflow coverage. For more information, see “Saturate
on Integer Overflow Coverage” on page 1-7. The software treats each element of a vector or matrix as
a separate coverage measurement.

Switch
The Switch block receives decision coverage based on the control input to the block. Decision
coverage measures:

 Model Objects That Receive Coverage

2-21

• The number of time steps that the control input evaluates to true.
• The number of time steps the control input evaluates to false.

The number of decision points is based on whether the control input is scalar or vector.

If you select the Saturate on integer overflow coverage metric, the Switch block receives saturate
on integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-7. The software treats each element of a vector or matrix as a separate coverage
measurement.

The Switch block contains an implicit comparison of its second input with a threshold value.
Therefore, if you select the Relational Boundary coverage metric, the Switch block receives
relational boundary coverage. For more information, see “Relational Boundary Coverage” on page 1-
7.

SwitchCase, SwitchCase Action Subsystem
The SwitchCase block and SwitchCase Action Subsystem receive decision coverage. The Simulink
Coverage software measures decision coverage individually for each switch case defined in the block
and also for the default case. The number of decision outcomes is equal to the number of case
conditions plus one for the default case, if one is defined.

The software reports the total number of time steps that each case evaluates to true. If each case,
including the default case, evaluates to true at least once, decision coverage is 100%. The software
determines the decision coverage by the number of cases that evaluate true for at least one time step
divided by the total number of cases.

If the SwitchCase block does not contain a default case, the software measures decision coverage
for the number of time steps in which none of the cases evaluated to true. In the coverage report, this
coverage is reported as implicit-default.

Test Condition
The Test Condition block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier
coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Test Condition block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Test Objective
The Test Objective block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier
coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Test Objective block.

2 Model Objects That Receive Model Coverage

2-22

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Triggered Models
A Model block can reference a model that contains edge-based trigger ports at the root level of the
model. Triggered models receive decision, condition, and MCDC coverage.

Decision coverage measures:

• The number of time steps that the referenced model is triggered, indicating a true decision.
• The number of time steps that the referenced model is not triggered, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage for the Model
block that references the triggered model is 100%. If no time steps are true, or if no time steps are
false, decision coverage is 50%.

Only if the trigger input is a vector, the Simulink Coverage software measures condition coverage for
the trigger port in the referenced model. For the trigger port, condition coverage measures:

• The number of time steps that each element of the trigger port is true.
• The number of time steps that each element of the trigger port is false.

The software reports condition coverage based on the total number of possible conditions and how
many are true for at least one time step and how many are false for at least one time step.

If the trigger port is a vector, the software measures MCDC coverage for the trigger port only.
Because the trigger port of the referenced model is an OR of the vector inputs, if, during at least one
time step, each vector trigger port is exclusively true and if, during at least one time step, all vector
trigger port inputs are false, MCDC coverage is 100%. The software treats each element of the vector
as a separate condition for MCDC coverage measurement.

Triggered Subsystem
The Triggered Subsystem block receives decision, condition, and MCDC coverage.

Decision coverage measures:

• The number of time steps that the block is triggered, indicating a true decision.
• The number of time steps that the block is not triggered, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%.

The Simulink Coverage software measures condition coverage for the trigger input only if the trigger
input is a vector. For the trigger input, condition coverage measures:

• The number of time steps that each element of the trigger edge is true.
• The number of time steps that each element of the trigger edge is false.

 Model Objects That Receive Coverage

2-23

The software reports condition coverage based on the total number of possible conditions and how
many are true for at least one time step and how many are false for at least one time step.

If the trigger input is a vector, the software measures MCDC coverage for the trigger input only.
Because the trigger edge of the subsystem is an OR of the vector inputs, if, during at least one time
step, each vector trigger edge input is exclusively true and if, during at least one time step, all vector
trigger edge inputs are false, MCDC coverage is 100%. The software treats each element of the
vector as a separate condition for MCDC coverage measurement.

Truth Table
The Truth Table block is a Stateflow block that enables you to use truth table logic directly in a
Simulink model. The Truth Table block receives condition, decision, and MCDC coverage. For more
information on model coverage with Stateflow truth tables, see “Model Coverage for Stateflow Truth
Tables” on page 5-81.

Unary Minus
If you select the Saturate on integer overflow coverage metric, the Unary Minus block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

Weighted Sample Time Math
If you select the Saturate on integer overflow coverage metric, the Weighted Sample Time Math
block receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-7. The software treats each element of a vector or matrix as a separate
coverage measurement.

While Iterator, While Iterator Subsystem
The While Iterator block and While Iterator Subsystem receive decision coverage. Decision coverage
is measured for the while condition value, which is determined by the while condition being
satisfied (true), or the while condition not being satisfied (false). Simulink Coverage software
reports the total number of times that each while condition evaluates to true and to false. If the
while condition evaluates to true at least once, and false at least once, decision coverage for the
while condition is 100%. If no while conditions are true, or if no while conditions are false,
decision coverage is 50%.

If the iteration limit is exceeded (true) or is not exceeded (false), the software measures decision
coverage independently. If the iteration limit evaluates to true at least once, and false at least once,
decision coverage for the iteration limit is 100%. If no iteration limits are true, or if no iteration limits
are false, decision coverage is 50%. If you set Maximum number of iterations to -1 (no limit), the
decision coverage for the iteration limit is true for all iterations and false for zero iterations, and
decision coverage is 50%.

2 Model Objects That Receive Model Coverage

2-24

Model Objects That Do Not Receive Coverage
The Simulink Coverage software does not record Decision, Condition, or MCDC coverage for blocks
that are not listed in “Model Objects That Receive Coverage” on page 2-2.

Note The software only records model coverage when the Simulation mode parameter is set to
Normal. If you have Embedded Coder installed, the software can measure the coverage of code
generated from models in SIL or PIL mode. For more information, see “Code Coverage for Models in
Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode” on page 4-6.

The following table identifies specific model objects that do not receive coverage in certain
conditions.

Model object Does not receive coverage...
Logical Operator block When the Operator parameter specifies XOR or

NXOR and there are more than twelve scalar
inputs or more than twelve elements in a vector
input.

Model block When the Simulation mode parameter specifies
Accelerator.

Coverage for Model blocks is the sum of the
coverage data for the contents of the referenced
model.

Protected model block Coverage information is not provided for
protected model blocks. See also “Model
Protection” (Simulink Coder).

Subsystem block When the Read/Write Permissions parameter is
set to NoReadOrWrite.

Stateflow chart

MATLAB Function block

When debugging/animation is not enabled for the
model or object.

Virtual Blocks Virtual blocks do not receive model coverage. For
more information, see “Nonvirtual and Virtual
Blocks”.

 Model Objects That Do Not Receive Coverage

2-25

Setting Coverage Options

• “Specify Coverage Options” on page 3-2
• “Access, Manage, and Accumulate Coverage Results by Using the Results Explorer” on page 3-7
• “Cumulative Coverage Data” on page 3-14
• “Cumulative Coverage Analysis” on page 3-15
• “Saturation on Integer Overflow Coverage” on page 3-31

3

Specify Coverage Options
Before starting a coverage analysis, you specify several coverage recording options. On the Apps tab,
select Coverage Analyzer. On the Coverage tab, select Settings.

Coverage Pane
On the Coverage pane in the Configuration Parameters dialog box, set the options for the coverage
calculated during simulation.

3 Setting Coverage Options

3-2

Enable coverage analysis

Gather specified coverage results during simulation and report the coverage. When you select
Enable coverage analysis, these sections become available:

• “Scope of analysis” on page 3-3
• “Include in analysis” on page 3-5
• “Coverage metrics” on page 3-5

Scope of analysis

Specifies the systems for which the software gathers and reports coverage data. The options are:

• “Entire System” on page 3-3
• “Referenced Models” on page 3-3
• “Subsystem” on page 3-4

You must select Enable coverage analysis to specify the scope of analysis.

Entire System

By default, generates coverage data for the entire system. The coverage results include the top-level
and all supported subsystems and model references.

Referenced Models

Record coverage for the referenced models and Observer models that you select. By default this
setting records coverage for all referenced models where the simulation mode of the Model block is
Normal, Software-in-the-loop (SIL), or Processor-in-the-loop (PIL), and for active
Observer models where the simulation mode is Normal.

To specify the referenced models and Observer models for which Simulink Coverage records
coverage data:

1 Select Enable coverage analysis.
2 For the scope of analysis, select Referenced Models.
3 Click Select Models.

 Specify Coverage Options

3-3

4 In the Select Models for Coverage Analysis dialog box, select the referenced models or Observer
models for which you want to record coverage. You can also select the top-level model.

The icon next to the model name indicates the simulation mode for that referenced model.

If you have multiple Model blocks that reference the same model and whose simulation modes
are the same, selecting the check box for that model selects the check boxes for all instances of
that model with the same simulation mode.

5 Click OK.

Subsystem

Coverage analysis records coverage during simulation for the subsystem that you select. By default,
generates coverage data for the entire model. To restrict coverage reporting to a particular
subsystem:

1 In the Configuration Parameters dialog box, on the Coverage pane, select Enable coverage
analysis.

2 Click Select Subsystem.

3 Setting Coverage Options

3-4

3 In the Subsystem Selection dialog box, select the subsystem for which you want to enable
coverage reporting and click OK.

Include in analysis

The Include in analysis section contains two options:

• MATLAB files enables coverage for any external functions called by MATLAB functions in your
model. You can define MATLAB functions in MATLAB Function blocks or in Stateflow charts.

To select the Coverage for MATLAB files option, you must select Enable coverage analysis.
• C/C++ S-functions enables coverage for C/C++ S-Function blocks in your model. Coverage

metrics are reported for the S-Function blocks and the C/C++ code in those blocks. For more
information, see “Generate Coverage Report for S-Function” on page 5-60.

You must select Enable coverage analysis to select the Coverage for S-Functions option.

Coverage metrics

Select the structural coverage level and other types of test case coverage analysis that you want the
tool to perform (see “Types of Model Coverage” on page 1-3). Simulink Coverage gathers and reports
those types of coverage for the subsystems, models, and referenced models that you specify.

The structural coverage levels are listed in order of strictness of test case coverage analysis:

• Block Execution — Enables “Execution Coverage (EC)” on page 1-3
• Decision — Enables “Execution Coverage (EC)” on page 1-3 and “Decision Coverage (DC)” on

page 1-3
• Condition Decision — Enables “Execution Coverage (EC)” on page 1-3, “Decision Coverage

(DC)” on page 1-3, and “Condition Coverage (CC)” on page 1-3
• Modified Condition Decision Coverage (MCDC) — enables “Execution Coverage (EC)” on

page 1-3, “Decision Coverage (DC)” on page 1-3, “Condition Coverage (CC)” on page 1-3, and
“Modified Condition/Decision Coverage (MCDC)” on page 1-4

Coverage metrics also includes Other metrics:

 Specify Coverage Options

3-5

• “Lookup Table Coverage” on page 1-5
• “Signal Range Coverage” on page 1-5
• “Signal Size Coverage” on page 1-5
• “Objectives and Constraints Coverage” on page 1-6
• “Saturate on Integer Overflow Coverage” on page 1-7
• “Relational Boundary Coverage” on page 1-7

You must select Enable coverage analysis to select the coverage metrics.

Results

In the Results section of the Coverage Configuration Parameters, select the destination for coverage
results. You must select Enable coverage analysis on the Coverage pane to set the Results
options.

• Save last run in workspace variable — Saves the results of the last simulation run in a cvdata
object in the workspace. Specify the workspace variable name in cvdata object name.

• cvdata object name — Name of the workspace variable where the results of the last simulation
run are saved. You must select Save last run in workspace variable to specify the cvdata
object name.

• Increment variable name with each simulation (var1, var2, ...) — Appends numerals to the
workspace variable names for each new result so that earlier results are not overwritten. You
must select Save last run in workspace variable to enable this option.

• Autosave data file name — Name of file to which coverage data results are saved. The default
name is $ModelName$_cvdata. $ModelName$ is the name of the model.

• Output directory — The folder where the coverage data is saved. The default location is
slcov_output/$ModelName$ in the current folder. $ModelName$ is the name of the model.

See Also

Related Examples
• “Access, Manage, and Accumulate Coverage Results by Using the Results Explorer” on page 3-

7

3 Setting Coverage Options

3-6

Access, Manage, and Accumulate Coverage Results by Using
the Results Explorer

In this section...
“Accessing Coverage Data from the Results Explorer” on page 3-7
“Managing Coverage Data from the Results Explorer” on page 3-11
“Accumulating Coverage Data from the Results Explorer” on page 3-11

After you “Specify Coverage Options” on page 3-2 and record coverage results, you can use the
Results Explorer to access, manage, and accumulate the coverage data that you record. After you
accumulate the coverage results you need, you can then create a “Top-Level Model Coverage Report”
on page 6-10 or “Export Model Coverage Web View” on page 6-39 using your accumulated
coverage data.

Accessing Coverage Data from the Results Explorer
To open the Results Explorer after coverage analysis, in the Coverage Analyzer app, click on
Results Explorer. The Results Explorer opens to show the most recent coverage run:

 Access, Manage, and Accumulate Coverage Results by Using the Results Explorer

3-7

You can view the current data results summary from within the Results Explorer or click Generate
Report to create a full coverage report. If you do not make any changes to your model after you
record coverage, you do not need to re-simulate the model to generate a new coverage report. For
more information on coverage reports, see “Top-Level Model Coverage Report” on page 6-10.

Click Highlight model with coverage results to provide highlighted results in your model that
allow you to quickly see coverage results for model objects. For more information, see “Overview of
Model Coverage Highlighting” on page 5-22.

Settings

In the coverage Results Explorer, you can access the data and reporting settings for your coverage
data. To access these settings, click Settings.

3 Setting Coverage Options

3-8

Option Description
Enable collecting cumulative data Accumulates coverage results from successive

simulations, by default. You specify the name and
output folder of the .cvt file in the in the
“Results” on page 3-6 section of the
Configuration Parameters dialog box. For more
information, see “Cumulative Coverage Data” on
page 3-14.

Show cumulative progress report Shows the Current Run coverage results, the
Delta of coverage compared to the previous
cumulative data, and the total Cumulative data
from all current cumulative data separately in the
coverage reports. If you do not select this option,
only the total Cumulative data from all current
cumulative data are shown.

Show report Opens a generated HTML coverage report in a
MATLAB browser window at the end of model
simulation. For more information, see “Top-Level
Model Coverage Report” on page 6-10.

You access the HTML report from the Simulink
Coverage contextual tabs, which appear when
you open the Coverage Analyzer app.

Generate Web View Report Opens a generated Model Coverage Web View in
a MATLAB browser window at the end of model
simulation. For more information, see “Export
Model Coverage Web View” on page 6-39.

Include each test in the model summary At the top of the HTML report, the model
hierarchy table includes columns listing the
coverage metrics for each test. If you do not
select this option, the model summary reports
only the total coverage.

Show aggregated tests information If you record coverage for one or more subsystem
harness, the Aggregated Tests section lists each
unit test run. For more information, see
“Aggregated Tests” on page 6-11.

Produce bar graphs in the model summary Causes the model summary to include a bar
graph for each coverage result for a visual
representation of the coverage.

Use two color bar graphs (red, blue) Red and blue bar graphs are displayed in the
report instead of black and white bar graphs.

Display hit/count ratio in the model
summary

Reports coverage numbers as both a percentage
and a ratio, for example, 67% (8/12).

Exclude fully covered model objects from
report

The coverage report includes only model objects
that the simulation does not cover fully, useful
when developing tests, because it reduces the
size of the generated reports.

 Access, Manage, and Accumulate Coverage Results by Using the Results Explorer

3-9

Option Description
Exclude fully covered model object details
from report

If you choose to include fully covered model
objects in the report, the report does not include
the details of the fully covered model objects

Include cyclomatic complexity numbers in
summary

Includes the cyclomatic complexity (see “Types of
Model Coverage” on page 1-3) of the model and
its top-level subsystems and charts in the report
summary. A cyclomatic complexity number shown
in boldface indicates that the analysis considered
the subsystem itself to be an object when
computing its complexity. Boldface text can occur
for atomic and conditionally executed subsystems
and Stateflow Chart blocks.

Include cyclomatic complexity numbers in
block details

Includes the cyclomatic complexity metric in the
block details section of the report.

Filter Stateflow events from report Excludes coverage data on Stateflow events.
Filter Execution metric from report Excludes coverage data on Execution metrics
Include linked requirements in aggregate
coverage report

If you run at least two test cases in Simulink
Test™ that are linked to requirements in Simulink
Requirements™, the aggregated coverage report
details the links between model elements, test
cases, and linked requirements. For more
information, see “Requirement Testing Details”
on page 6-20.

Creating and Managing Filters

You can create, load, or edit filters for the current coverage data from within the Results Explorer.

1 Open the Results Explorer.
2 Click the Applied filters tab.

3 Setting Coverage Options

3-10

For more information on filtering model objects, see “Creating and Using Coverage Filters” on page
7-11.

Managing Coverage Data from the Results Explorer
After you record coverage, you can manage the coverage data from the Results Explorer. To view
coverage data details, under Current Cumulative Data, click the coverage data of interest. You can
edit the description and tags for each run. Before you leave the coverage data details view, click
Apply to apply your changes. Otherwise, the changes are reverted.

When you apply changes to coverage data, such as adding descriptions and tags, the data shows an
asterisk next to its icon. To save these changes, right-click the data and click Save modified
coverage data.

Accumulating Coverage Data from the Results Explorer
If you record multiple coverage runs, each run is listed separately in the Data Repository. You can
drag and drop runs from the Data Repository to the Current Cumulative Data to manage which runs
to include in the cumulative coverage data. Alternatively, right-click runs in the Data Repository or
the Current Cumulative Data to include or exclude them in the cumulative coverage data.

 Access, Manage, and Accumulate Coverage Results by Using the Results Explorer

3-11

To save the current cumulative data set to a .cvt file, click Save cumulative coverage data.
Alternatively, you can right-click the Current Cumulative Data and select Save cumulative
coverage data.

Load Existing Coverage Data

The Data Repository contains the coverage data, which is saved to the Input folder. You specify the
Input folder on the Configuration Parameters dialog box > Coverage > “Results” on page 3-6
section, in the Output directory field.

3 Setting Coverage Options

3-12

To synchronize the data in the input folder and the data in the Data Repository, click Synchronize

with the current coverage data folder .

To load existing coverage data to the Data Repository:

1 Right-click the Data Repository.
2 Select Load coverage data.
3 Select existing coverage data for the current model and click Open.

 Access, Manage, and Accumulate Coverage Results by Using the Results Explorer

3-13

Cumulative Coverage Data
On the Coverage pane in the Configuration Parameters dialog box, click the ... to open the
Advanced parameters. If you select Enable cumulative data collection and Save cumulative
results in workspace variable, a coverage running total is updated with new results at the end of
each simulation. However, if you change model or block settings between simulations that are
incompatible with settings from previous simulations and affect the type or number of coverage
points, the cumulative coverage data resets.

When you restore a running total from saved data, the saved results are reflected in the next
cumulative report. If a running total exists when you restore a saved value, the existing value is
overwritten.

Whenever you report on more than one single simulation, the coverage displayed for truth tables and
lookup-table maps is based on the total coverage of all the reported runs. For cumulative reports, this
information includes all the simulations where cumulative results are stored. For more information
about managing cumulative results, see “Access, Manage, and Accumulate Coverage Results by Using
the Results Explorer” on page 3-7.

You can make cumulative coverage results persist between MATLAB sessions. The cvload parameter
RESTORETOTAL must be 1 to restore cumulative results. At the end of the sessions, use cvsave to
save results to a file. At the beginning of the next session, use cvload to load the results.

When you save the coverage results to a file using cvsave and a model name argument, the file also
contains the cumulative running total. When you load that file into the coverage tool using cvload,
you can select whether you want to restore the running total from the file.

You can also calculate cumulative coverage results at the command line, through the + operator:

covdata1 = cvsim(test1);
covdata2 = cvsim(test2);
cvhtml('cumulative_report', covdata1 + covdata2);

3 Setting Coverage Options

3-14

Cumulative Coverage Analysis
This example illustrates the use of the Coverage Results Explorer to simplify the generation of
cumulative coverage data and reports spanning a set of multiple coverage runs.

Open Example Model

This example uses the slvnvdemo_ratelim_harness model to explain the settings and options to
accumulate coverage. Inside this model is an implementation of an Adjustable Rate Limiter. It uses
three Switch blocks to control when the output should be limited and the type of limit to apply.

Inputs are produced using three From Workspace blocks: gain, rising limit, and falling limit. The
values of the inputs are specified by six variables defined in the MATLAB® workspace: t_gain,
u_gain, t_pos, u_pos, t_neg, and u_neg.

open_system('slvnvdemo_ratelim_harness');

open_system('slvnvdemo_ratelim_harness/Adjustable Rate Limiter');

 Cumulative Coverage Analysis

3-15

Enable Coverage Analysis

Start by opening the coverage settings. From the Modeling tab, select Model Settings.

To enable the coverage tool, select Enable coverage analysis in the Coverage pane. This setting
enables the other options in the Coverage pane.

For this example, collect condition and decision coverage. Under the Coverage metrics panel, set
the Structural coverage level to Condition Decision.

3 Setting Coverage Options

3-16

Click OK to apply your selected settings and close this dialog.

Simulate Model with First Test Case

The first test case exercises the scenario where the input values do not change rapidly. It uses a sine
wave as the time varying signal and constants for rising and falling limits.

t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);

Calculate the minimum and maximum change of the time varying input using the MATLAB diff
function.

max_change = max(diff(u_gain))
min_change = min(diff(u_gain))

max_change =

 0.1253

 Cumulative Coverage Analysis

3-17

min_change =

 -0.1253

Based on these minimum and maximum rates of change, set the rate limits to 1 and -1. As such, the
rate of change of the input will be well within these limits for this test run.

t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];

Simulate the model with this first set of input variables by clicking the Run (Coverage) button.

sim('slvnvdemo_ratelim_harness');

Review First Test Case in Results Explorer

To open the Results Explorer, in the Coverage Analyzer app, click Results Explorer.

At this point the Current Cumulative Data contains just this first coverage run (tagged as Run 1).
The Results Explorer initially shows information regarding this latest coverage run, including a
summary of results for each enabled metric.

To keep track of the intent of this simulation, enter the text "Test within rate limits" in the
Description field and click Apply.

3 Setting Coverage Options

3-18

Simulate Model with Second Test Case

The second test case complements the first case with a rising gain that exceeds the rate limit. After a
second it increases the rate limit so that the gain changes are below that limit.

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];

Simulate the model with this second set of variables by clicking the Run (Coverage) button.

sim('slvnvdemo_ratelim_harness');

Generate Cumulative Progress Report for Second Test Case

Now that multiple coverage runs have been performed, you can generate cumulative coverage
reports.

First, add a brief description of this run, as was done for the previous simulation. Enter the text
"Test rising rate limit" in the Description field for Run 2 and click Apply.

 Cumulative Coverage Analysis

3-19

There are different formats of coverage reports that can be generated. To visualize how the most
recent simulation affects the cumulative coverage results, you can generate a cumulative progress
report.

In the Results Explorer, under Settings, select Show cumulative progress report and click Apply.

3 Setting Coverage Options

3-20

Click on Current Cumulative Data in the leftmost pane of the Results Explorer. Note that the
Summary indicates the cumulative coverage results accumulated from Run 1 and Run 2. Click on
Generate Report to create the cumulative progress report.

 Cumulative Coverage Analysis

3-21

The Summary section of the cumulative progress report has three columns: Current Run, Delta, and
Cumulative. The Current Run column displays the coverage from the last simulation listed under
Current Cumulative Data (which is Run 2 in this case). The Delta column displays the coverage
exposed by the current run that was not achieved in the cumulative results before this simulation.
The Cumulative column gives the current cumulative coverage results.

3 Setting Coverage Options

3-22

 Cumulative Coverage Analysis

3-23

Simulate Model with Third Test Case

The third test case is a mirror image of the second, with the rising gain replaced by a falling gain.

t_gain = [0;2];
u_gain = [-0.02;-4.02];
t_pos = [0;2];
u_pos = [0;0];
t_neg = [0;1;1;2];
u_neg = [-1;-1;-5;-5]*0.02;

Simulate the model with this third set of variables by clicking the Run (Coverage) button.

sim('slvnvdemo_ratelim_harness');

Generate Cumulative Progress Report for Third Test Case

Once again, add a brief description of the latest run. Enter the text "Test falling rate limit"
in the Description field for Run 3 and click Apply.

Navigate to Current Cumulative Data and click Generate Report to create a cumulative progress
report for this latest run.

3 Setting Coverage Options

3-24

Notice that with this latest run, the cumulative results achieve full coverage for the Decision,
Condition, and Execution metrics.

 Cumulative Coverage Analysis

3-25

3 Setting Coverage Options

3-26

Refine Cumulative Dataset

If you determine that a particular coverage run is not necessary, you can exclude this run from the
cumulative dataset and generate a new cumulative report.

In the Results Explorer, under Current Cumulative Data, right-click on Run 1 and select Exclude
from cumulative data.

Generate Final Cumulative Coverage Report

Now that you have selected the desired subset of test runs, you can generate a coverage report for
the accumulated results.

Navigate to Settings, deselect Show cumulative progress report, and then click Apply.

 Cumulative Coverage Analysis

3-27

Navigate to Current Cumulative Data and click Generate Report.

3 Setting Coverage Options

3-28

The cumulative coverage report displays the results associated with the current cumulative data.
Notice under the Tests section, there is a single test with the description "Test rising rate
limit,Test falling rate limit", indicating that this test contains the accumulated results
from runs 2 and 3.

The Summary section shows that these cumulative results attain full coverage for all metrics
analyzed.

 Cumulative Coverage Analysis

3-29

3 Setting Coverage Options

3-30

Saturation on Integer Overflow Coverage
Simulate this model to collect and report Saturate on integer overflow coverage.

Enabling Saturation on integer overflow

To enable the coverage metric Saturation on integer overflow:

Click on the Modeling tab in the toolstrip. Click on Model Settings.

On the left pane, click on Coverage. Ensure that Enable coverage analysis is checked.

Expand the Other metrics drop down list. Check the box next to Saturation on integer overflow.

What Saturation on integer overflow does

The coverage tool identifies all the blocks that have the Saturation on integer overflow parameter
enabled. After simulating the model, the tool reports the number of times each block saturates on
integer overflow.

In this example, the test harness supplies the Test Unit with an input to reach full coverage on one of
the Sum blocks in the Controller subsystem.

The other two Sum blocks in the Controller subsystem do not generate true cases because they do
not reach their saturation thresholds.

When to use Saturation on integer overflow

Saturation on integer overflow coverage helps to identify missing tests for blocks and blocks that do
not need the saturation on integer overflow parameter enabled, optimizing design efficiency.

For more information, see “Saturate on Integer Overflow Coverage” on page 1-7.

 Saturation on Integer Overflow Coverage

3-31

Code Coverage

4

Types of Code Coverage
If you have Embedded Coder, Simulink Coverage can perform several types of code coverage analysis
for models in software-in-the-loop (SIL) mode, processor-in-the-loop (PIL) mode, and for the code
within supported S-Function blocks.

In this section...
“Statement Coverage for Code Coverage” on page 4-2
“Condition Coverage for Code Coverage” on page 4-2
“Decision Coverage for Code Coverage” on page 4-3
“Modified Condition/Decision Coverage (MCDC) for Code Coverage” on page 4-3
“Cyclomatic Complexity for Code Coverage” on page 4-4
“Relational Boundary for Code Coverage” on page 4-4
“Function Coverage” on page 4-4
“Function Call Coverage” on page 4-5

Statement Coverage for Code Coverage
Statement coverage determines the number of source code statements that execute when the code
runs. Use this type of coverage to determine whether every statement in the program has been
invoked at least once.

Statement coverage = (Number of executed statements / Total number of statements) *100

Statement Coverage Example

This code snippet contains five statements. To achieve 100% statement coverage, you need at least
three test cases. Specifically, tests with positive x values, negative x values, and x values of zero.

if (x > 0)
 printf("x is positive");
else if (x < 0)
 printf("x is negative");
else
 printf("x is 0");

Condition Coverage for Code Coverage
Condition coverage analyzes statements that include conditions in source code. Conditions are C/C+
+ Boolean expressions that contain relation operators (<, >, <=, or >=), equation operators (!= or ==),
or logical negation operators (!), but that do not contain logical operators (&& or ||). This type of
coverage determines whether every condition has been evaluated to all possible outcomes at least
once.

Condition coverage = (Number of executed condition outcomes / Total number of condition outcomes)
*100

Condition Coverage Example

In this expression:

4 Code Coverage

4-2

y = x<=5 && x!=7;

there are these conditions:

x<=5
x!=7

Decision Coverage for Code Coverage
Decision coverage analyzes statements that represent decisions in source code. Decisions are
Boolean expressions composed of conditions and one or more of the logical C/C++ operators && or
||. Conditions within branching constructs (if/else, while, do-while) are decisions. Decision coverage
determines the percentage of the total number of decision outcomes the code exercises during
execution. Use this type of coverage to determine whether all decisions, including branches, in your
code are tested.

Note The decision coverage definition for DO-178C compliance differs from the Simulink Coverage
definition. For decision coverage compliance with DO-178C, select the Condition Decision
structural coverage level for Boolean expressions not containing && or || operators.

Decision coverage = (Number of executed decision outcomes / Total number of decision outcomes)
*100

Decision Coverage Example

This code snippet contains three decisions:

y = x<=5 && x!=7; // decision #1

if(x > 0) // decision #2
 printf("decision #2 is true");
else if(x < 0 && y) // decision #3
 printf("decision #3 is true");
else
 printf("decisions #2 and #3 are false");

Modified Condition/Decision Coverage (MCDC) for Code Coverage
Modified condition/decision coverage (MCDC) is the extent to which the conditions within decisions
are independently exercised during code execution.

• All conditions within decisions have been evaluated to all possible outcomes at least once.
• Every condition within a decision independently affects the outcome of the decision.

MCDC coverage = (Number of conditions evaluated to all possible outcomes affecting the outcome of
the decision / Total number of conditions within the decisions) *100

Modified Condition/Decision Coverage Example

For this decision:

X || (Y && Z)

 Types of Code Coverage

4-3

the following set of test cases delivers 100% MCDC coverage.

 X Y Z
Test case #1 0 0 1
Test case #2 0 1 0
Test case #3 0 1 1
Test case #4 1 0 1

Cyclomatic Complexity for Code Coverage
Cyclomatic complexity is a measure of the structural complexity of code that uses the McCabe
complexity measure. To compute the cyclomatic complexity of code, code coverage uses this formula:

c = ∑
1

N
(on− 1)

N is the number of decisions in the code. on is the number of outcomes for the nth decision point.
Code coverage adds 1 to the complexity number for each C/C++ function.

Coverage Example

For this code snippet, the cyclomatic complexity is 3:

void evalNum(int x)
{
 if (x > 0) // decision #1
 printf("x is positive");
 else if (x < 0) // decision #2
 printf("x is negative");
 else
 printf("x is 0");
}

The code contains one function that has two decision points. Each decision point has two outcomes.
Using the preceding formula, N is 2, o1 is 2, and o2 is 2. Code coverage uses the formula with these
decisions and outcomes and adds 1 for the function. The cyclomatic complexity for this code snippet
is:

c = (o1 − 1) + (o2 − 1) + 1 = (2 − 1) + (2 − 1) + 1 = 3

Relational Boundary for Code Coverage
Relational boundary code coverage examines code that has relational operations. Relational boundary
code coverage metrics align with those for model coverage, as described in “Relational Boundary
Coverage” on page 1-7. Fixed-point values in your model are integers during code coverage.

Function Coverage
Function coverage determines whether all the functions of your code have been called during
simulation. For instance, if there are ten unique functions in your code, function coverage checks if
all ten functions have been executed at least once during simulation.

4 Code Coverage

4-4

Function Call Coverage
Function call coverage determines whether all function call-sites in your code have been executed
during simulation. For instance, if functions are called twenty times in your code, function call
coverage checks if all twenty function calls have been executed during simulation.

 Types of Code Coverage

4-5

Code Coverage for Models in Software-in-the-Loop (SIL) Mode
and Processor-in-the-Loop (PIL) Mode

If you have Embedded Coder and Simulink Coverage, you can analyze coverage for generated code
during a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation.

In this section...
“Enable SIL or PIL Code Coverage for a Model” on page 4-6
“Review the Coverage Results for Models in SIL or PIL Mode” on page 4-6
“Limitations” on page 4-8

Enable SIL or PIL Code Coverage for a Model
To record SIL or PIL code coverage for a model:

1 In the Configuration Parameters dialog box, on the left pane, click Code Generation. From the
list, select Verification.

2 Under Code profiling, set Measure function execution times to Off.
3 Under Code coverage for SIL or PIL, set Third-party tool to None (use Simulink

Coverage).
4 Enable coverage for a model in SIL or PIL mode or a reference model in SIL or PIL mode.
5 Run a SIL or PIL simulation.

Note The Coverage (Run) button in the Coverage toolstrip forces a Normal simulation and will
not yield SIL or PIL code coverage.

Review the Coverage Results for Models in SIL or PIL Mode
Code Coverage Report

In the code coverage report, each hyperlink opens a report with more details on the coverage
analysis for the model. The code coverage results in these reports are similar to the coverage results
for C/C++ code in S-function blocks, as described in “View Coverage Results for Custom C/C++ Code
in S-Function Blocks” on page 5-61. You can navigate from code coverage results to the associated
model blocks by using the links within the detailed code coverage reports.

4 Code Coverage

4-6

Each detailed code coverage report also contains syntax highlighted code with coverage information.

Code View

To view the code coverage information in the Code view, from the drop-down list to the right of the
search box, select Show code coverage. If the option is disabled, then on the Coverage tab, click
Coverage Highlighting. The code displays highlighting and annotations that show code coverage
information. You can navigate from the code to the associated model blocks by using the links in the
line numbers, code elements, and comments.

 Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode

4-7

At the bottom of the Code view, the coverage section shows a summary of the code coverage report.

Limitations
Coverage for models in SIL and PIL mode has these limitations:

• The model must meet the requirements listed in “Enable SIL or PIL Code Coverage for a Model”
on page 4-6.

• Code coverage results must not include external C/C++ files in read-only folders.
• The Coverage (Run) button in the Coverage toolstrip forces a Normal simulation and will not

yield SIL or PIL code coverage.

See Also

Related Examples
• “Custom Toolchain Directives Required for Code Coverage and Execution Profiling” (Embedded

Coder)
• “Software-in-the-Loop Code Coverage” on page 4-21
• “SIL/PIL Manager Verification Workflow” (Embedded Coder)

4 Code Coverage

4-8

Collect Code Coverage Metrics with Simulink® Coverage™
This example shows how to collect code coverage metrics during a software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation with Simulink® Coverage™.

You use the code coverage tool and code coverage report to view the recorded code coverage for a
SIL simulation.

In this example, you measure model coverage during a simulation in normal mode, repeat the same
simulation in SIL mode, and compare the recorded metrics from both simulations.

Compare model coverage and code coverage results by using the hyperlinks in the model coverage
and code coverage reports.

For more examples of measuring SIL and PIL simulations, see “Test Generated Code with SIL and PIL
Simulations” (Embedded Coder).

 Collect Code Coverage Metrics with Simulink® Coverage™

4-9

Initial Setup

Open the model.

model = 'rtwdemo_sil_topmodel';
close_system(model,0)
open_system(model)

Remove any existing build folders.

buildFolder = RTW.getBuildDir(model);
if isfolder(buildFolder.BuildDirectory)
 rmdir(buildFolder.BuildDirectory,'s');
end

Configure the model for coverage collection.

set_param(model, 'CovEnable', 'on')
clear covCumulativeData

Set up the input data.

T = 0.1; % sample time
[ticks_to_count, reset, counter_mode, count_enable, ...
 counter_mode_values_run1, counter_mode_values_run2, ...
 count_enable_values_run1, count_enable_values_run2] = ...
 rtwdemo_sil_topmodel_data(T);

Run the First Simulation in Normal Mode

After the simulation completes, the model coverage report opens. To navigate from blocks in the
model to the corresponding sections of the coverage report, use the coverage display window.

counter_mode.signals.values = counter_mode_values_run1;
count_enable.signals.values = count_enable_values_run1;
set_param(model, 'SimulationMode', 'normal');

Use the Simulation Data Inspector to view and compare simulation results.

Simulink.sdi.view;
Simulink.sdi.clear;

Run the simulation.

simout_normal_run1 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Capture the results.

Simulink.sdi.createRun('Run 1 (normal mode)', 'namevalue',...
 {'simout_normal_run1'}, {simout_normal_run1});

Run the Second Simulation in Normal Mode

For the first simulation, the report shows that the model achieved less than 100% MCDC coverage.
Run a second simulation with different input signals to increase the level of MCDC coverage to 100%.
The model coverage report is configured to show cumulative coverage across both simulation runs.

counter_mode.signals.values = counter_mode_values_run2;
count_enable.signals.values = count_enable_values_run2;

4 Code Coverage

4-10

set_param(model, 'SimulationMode', 'normal');

simout_normal_run2 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Simulink.sdi.createRun('Run 2 (normal mode)', 'namevalue',...
 {'simout_normal_run2'}, {simout_normal_run2});

Configure the Model to Measure Code Coverage

Before running a SIL simulation, configure the model to collect code coverage metrics.

coverageSettings = get_param(model, 'CodeCoverageSettings');
coverageSettings.CoverageTool = 'Simulink Coverage';
set_param(model, 'CodeCoverageSettings', coverageSettings);

Run the First Simulation in SIL Mode

You can use the same input signals in the SIL simulation that you used during the first simulation run
in normal mode.

Run the first simulation in SIL mode.

counter_mode.signals.values = counter_mode_values_run1;
count_enable.signals.values = count_enable_values_run1;
set_param(model, 'SimulationMode', 'software-in-the-loop');
set_param(model, 'CodeExecutionProfiling', 'off');
set_param(model, 'CodeProfilingInstrumentation', 'off');
simout_sil_run1 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Starting build procedure for: rtwdemo_sil_topmodel
Successful completion of build procedure for: rtwdemo_sil_topmodel

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
rtwdemo_sil_topmodel Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 12.917s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Updating code generation report with SIL files ...
Starting SIL simulation for component: rtwdemo_sil_topmodel
Stopping SIL simulation for component: rtwdemo_sil_topmodel

Simulink.sdi.createRun('Run 1 (SIL mode)', 'namevalue',...
 {'simout_sil_run1'}, {simout_sil_run1});

When the simulation completes, view the code coverage results on the model by using coverage
highlighting. To see the SIL code coverage summary for a model element, place your cursor over the
model element.

 Collect Code Coverage Metrics with Simulink® Coverage™

4-11

You can also view the code coverage results in the HTML code coverage report. The summary section
shows that all functions have been called, but the SIL simulation run did not achieve full coverage for
decision, condition, or MCDC coverage.

4 Code Coverage

4-12

To navigate to the corresponding model elements in the block diagram, use the hyperlinks in the code
coverage report

Run the Second Simulation in SIL mode

Use the same input signals in the SIL simulation that you used in the second simulation run in normal
mode.

counter_mode.signals.values = counter_mode_values_run2;
count_enable.signals.values = count_enable_values_run2;
set_param(model, 'SimulationMode', 'software-in-the-loop');
set_param(model, 'CodeExecutionProfiling', 'off');
set_param(model, 'CodeProfilingInstrumentation', 'off');
simout_sil_run2 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Starting build procedure for: rtwdemo_sil_topmodel
Generated code for 'rtwdemo_sil_topmodel' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for: rtwdemo_sil_topmodel

Build Summary

 Collect Code Coverage Metrics with Simulink® Coverage™

4-13

Top model targets built:

Model Action Rebuild Reason
==
rtwdemo_sil_topmodel Code compiled Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 4.8s
Preparing to start SIL simulation ...
Starting SIL simulation for component: rtwdemo_sil_topmodel
Stopping SIL simulation for component: rtwdemo_sil_topmodel

Simulink.sdi.createRun('Run 2 (SIL mode)', 'namevalue',...
 {'simout_sil_run2'}, {simout_sil_run2});

The code coverage highlighting shows that the generated code from the model achieved full
coverage.

4 Code Coverage

4-14

Compare Metrics from the Normal and SIL Simulations

The Simulation Data Inspector opens automatically after each run, which allows you to view and
analyze the results. To confirm that the logged signals for the SIL and normal mode runs are
identical, review the information in the Compare and Inspect panes.

 Collect Code Coverage Metrics with Simulink® Coverage™

4-15

Specify Code Coverage Options
Simulink Coverage provides three modes of code coverage analysis. For general coverage options,
see “Specify Coverage Options” on page 3-2.

In this section...
“Models with S-Function Blocks” on page 4-16
“Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks” on page 4-16
“Models with MATLAB Function Blocks” on page 4-17

Models with S-Function Blocks
Configure an S-Function block for coverage based on how you created it. For more information, see
“Coverage for Custom C/C++ Code in Simulink Models” on page 5-59.

Note If you have software-in-the-loop or processor-in-the-loop blocks in your model, set the options
described in “Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks” on page 4-
16.

Models with Software-in-the-Loop and Processor-in-the-Loop Mode
Blocks
1 Open the Configuration Parameters. In the Modeling tab, click Model Settings.
2 Before setting code coverage options, on the Code Generation pane in the Configuration

Parameters dialog box, set the System target file in the Target selection menu to ert.tlc.
3 In the Configuration Parameters dialog box, on the left pane, click Code Generation. From the

list, select Verification.
4 Select the code coverage tool from the Code coverage for SIL or PIL tab.

You can measure code coverage using these tools:

• Simulink Coverage code coverage tool
• BullseyeCoverage
• LDRA TestBed

BullseyeCoverage and LDRA TestBed are third-party tools supported by Embedded Coder. For more
information on third-party code coverage tool support, see “Code Coverage Tool Support” (Embedded
Coder). To set code coverage options, click Configure. If you select None (use Simulink
Coverage) as the code coverage tool, the software opens the Coverage pane when you click
Configure.

Using Simulink Coverage for code coverage means that you can analyze coverage results, justify
missing coverage, and generate more test cases from within the Simulink environment.

4 Code Coverage

4-16

Models with MATLAB Function Blocks
When you record coverage for models containing MATLAB Function blocks, code coverage is
recorded for the code within the MATLAB Function blocks. To include MATLAB Function blocks in
your analysis:

1 In the Simulink Editor, select Model Settings on the Modeling tab.
2 In the Configuration Parameters dialog box, on the Coverage pane, under Include in analysis,

select MATLAB files.

See Also

More About
• “Create and Run Test Cases” on page 5-2
• “Types of Coverage Reports” on page 6-2
• “View Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-61
• “Coverage Filtering” on page 7-2

 Specify Code Coverage Options

4-17

Coverage for Models with Code Blocks and Simulink Blocks
In this section...
“Set Up the Model to Record Coverage” on page 4-18
“Record Coverage” on page 4-19
“Review Results by Generating a Coverage Report” on page 4-19
“Justify Missing Coverage” on page 4-19

In this example, you record coverage for a model which contains a combination of code blocks and
other Simulink blocks.

Set Up the Model to Record Coverage
1 Open the model.

open_system('ex_cc_cruise_control_doublepress_sfun');

The model is a cruise control system that consists of test cases and input signals from a Signal
Builder block. The signals from the Signal Builder act as inputs to the Stateflow chart
ComputeTargetSpeed, which engages or disengages the cruise control system and sets the
target speed, tspeed.

2 In the Simulink Editor, select Model Settings on the Modeling tab. Before setting code
coverage options, on the Code Generation pane in the Configuration Parameters dialog box, set
the System target file in the Target selection menu to ert.tlc. Navigate to the Verification
tab of the Code Generation pane. From the Code coverage for SIL or PIL tab, select None
(use Simulink Coverage) as the code coverage tool.

3 In the Coverage pane, set the options for coverage calculated during simulation.

1 Select Enable coverage analysis.
2 In the Include in analysis section, ensure that C/C++ S-Functions is selected.
3 In the Coverage metrics section, select Modified Condition Decision (MCDC) as the

Structural coverage level. Apply the changes by clicking Apply.
4 Open the RejectDoublePress S-Function Builder block. In the Build options of the Build

Info tab, select Enable support for coverage. To build the S-Function, click Build .

Note To build the S-Function, you must have a compiler installed. For more information on
supported compilers for various platforms, see Supported and Compatible Compilers.

4 Code Coverage

4-18

https://www.mathworks.com/support/sysreq/previous_releases.html

Record Coverage
1 Open the Signal Builder block.

open_system('ex_cc_cruise_control_doublepress_sfun/Signal Builder');
2 The Signal Builder consists of eight signal groups with five signals each. In this example, we

simulate all the signal groups and record coverage. Click Run all and produce coverage
to start recording coverage. At the end of the simulation, the Coverage Results Explorer opens,
showing the results for the latest coverage analysis. The blocks in the model are highlighted in
different colors corresponding to the level of coverage achieved by each block.

Review Results by Generating a Coverage Report
The Coverage Results Explorer offers several options for displaying and reporting coverage results.
Select the Not_Engaged_with_Enable group in the Current Cumulative Data tab of the left
pane. Click the Generate report link at the bottom of the Coverage Results Explorer to generate an
HTML coverage report in the built-in MATLAB web browser. The coverage report lists model
coverage for Simulink model blocks and code coverage for code blocks.

Scroll down to view the coverage metrics for the S-Function block in the coverage report. Click the
Detailed Report link to open the code coverage report for the S-Function block. For more details on
the code coverage report for S-Function blocks, see“View Coverage Results for Custom C/C++ Code
in S-Function Blocks” on page 5-61.

Justify Missing Coverage
In this example, we justify coverage for one input signal group by creating a coverage filter. In the
code coverage report for the S-Function block created in “Review Results by Generating a Coverage
Report” on page 4-19, scroll down to Decision/Condition 2.1 !(CoastSetSwIn[0] &&
AccelResSwIn[0]). This condition is never False for the current test case. We can therefore justify
this condition in our coverage analysis.

1 Click the Justify or Exclude link under the detailed results for this condition. The Filter tab of
the Coverage Results Explorer opens, and the rule filtering this transition is added. Change the
Mode for this rule to Justified and enter a description for the Rationale, such as “expression
cannot be false”. Click Apply to apply the changes.

2 After you click Apply, the Generate report link becomes available. Click the link to generate the
report with the updated coverage filter. The new code coverage report for the
RejectDoublePress S-Function block lists the excluded condition under Objects Filtered
from Coverage Analysis. The detailed results for the condition !(CoastSetSwIn[0] &&
AccelResSwIn[0]) show that missing coverage for this condition has been justified. The
justified objects are treated as satisfied when reporting coverage percentages and appear light
blue in the “Coverage Summary” on page 6-12.

For more information on coverage filters, see “Coverage Filtering” on page 7-2.

 Coverage for Models with Code Blocks and Simulink Blocks

4-19

See Also
“Types of Coverage Reports” on page 6-2 | “Creating and Using Coverage Filters” on page 7-11 |
“Coverage for Custom C/C++ Code in Simulink Models” on page 5-59

4 Code Coverage

4-20

Software-in-the-Loop Code Coverage
This example shows how to use a model reference in either SIL or Normal simulation mode to collect
model or code coverage metrics with Simulink® Coverage™.

 Software-in-the-Loop Code Coverage

4-21

Use Justification Rules to Filter Code Coverage Outcomes
This example shows how to filter code coverage outcomes in the coverage report after collecting
coverage for a model in software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode.

Generate Code Coverage Data

First, put the model into SIL/PIL mode. In the Simulink® window, click Apps and, under Code
Verification, Validation, and Test, click SIL/PIL Manager. On the SIL/PIL tab, change
Automated Verification to SIL/PIL Simulation Only.

In this example model, coverage is enabled by default. If you are using your own model, enable
coverage in the Configuration Parameters window. For more information about coverage settings,
see “Specify Coverage Options” on page 3-2.

Simulate the model and collect coverage by clicking Run SIL/PIL. When you simulate the model, a
docked pane opens next to the Simulink® model. Click the Coverage Details tab to see the code
coverage report.

4 Code Coverage

4-22

Starting build procedure for: slvnvdemo_counter
Successful completion of build procedure for: slvnvdemo_counter

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
slvnvdemo_counter Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 38.696s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Updating code generation report with SIL files ...
Starting SIL simulation for component: slvnvdemo_counter
Stopping SIL simulation for component: slvnvdemo_counter
Completed code coverage analysis

Justify Missing Code Coverage Using Coverage Filters

If your model has unreachable logic that is intentional, such as defensive model design or exception
handling, you can justify this missing coverage using coverage filters.

 Use Justification Rules to Filter Code Coverage Outcomes

4-23

The Summary section of the code coverage report links to each source file and function. In this
example, click slvnvdemo_counter_step. The code coverage report jumps to the function named
slvnvdemo_counter_step. In section 2.1, you can see that both conditions inside the decision (!
(slvnvdemo_counter_U.upper >=z rtb_input)) || (!rtb_inputGElower)| are false for all time
steps.

You can justify the missing coverage from the report. Click the Add justification rule button next to
the condition slvnvdemo_counter_U.upper >= rtb_input. The Coverage Results Explorer
opens and adds a rule to justify the missing outcome from the report.

4 Code Coverage

4-24

In the Filter Editor pane, set the Name field to myCodeCovFilter. You can set the Description field
to any descriptive text. The Filter Rules section has two tabs, Model and Code. In this case, the
filter appears on the Code tab because you are filtering from the code coverage report. You can
double-click the Rationale field to add a reason, for example "Expected result."

Near the top of the Filter Editor, under the Filename field, click Save as. In the Save filter window,
name the filter file myCodeCovFilter. Note that the filter name and the filter file name do not have
to be the same.

When you save the filter, the code coverage report updates and displays the justified outcome.

 Use Justification Rules to Filter Code Coverage Outcomes

4-25

Justify the false case of the second condition by clicking the Add justification rule filter next to
rtb_inputGElower and following the steps listed above. This second rule is added to the same filter
file that you created for the first rule.

You can create a new code coverage report after applying coverage filters by clicking Current
Cumulative Data (H) in the left pane of the Coverage Results Explorer, and then clicking Generate
report at the bottom of the Coverage Data pane. This link creates a standalone report.

4 Code Coverage

4-26

The summary section of the code coverage report reflects the improved condition coverage due to the
filter rules.

Additionally, the code coverage report now shows a section titled Objects Filtered from Coverage
Analysis that displays the filter rules and rationales.

 Use Justification Rules to Filter Code Coverage Outcomes

4-27

4 Code Coverage

4-28

Coverage Collection During Simulation

• “Create and Run Test Cases” on page 5-2
• “Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage”

on page 5-3
• “Modified Condition and Decision Coverage in Simulink Design Verifier” on page 5-6
• “Logical Operator Cascade Patterns” on page 5-9
• “Analyzing MCDC for Cascaded Logic Blocks” on page 5-10
• “View Coverage Results in a Model” on page 5-22
• “Model Coverage for Multiple Instances of a Referenced Model” on page 5-26
• “Obtain Cumulative Coverage for Reusable Subsystems and Stateflow® Constructs”

on page 5-34
• “Trace Coverage Results to Requirements by Using Simulink Test and Simulink Requirements”

on page 5-36
• “Assess Coverage Results from Requirements-Based Tests” on page 5-39
• “Trace Coverage Results to Associated Test Cases” on page 5-41
• “Model Coverage for MATLAB Functions” on page 5-45
• “Coverage for MATLAB® Function Blocks” on page 5-57
• “Coverage for Custom C/C++ Code in Simulink Models” on page 5-59
• “View Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-61
• “Coverage for S-Functions” on page 5-65
• “Model Coverage for Stateflow Charts” on page 5-67

5

Create and Run Test Cases
To create and run test cases, model coverage provides the MATLAB commands cvtest and cvsim.
The cvtest command creates test cases that the cvsim command runs.

You can also run the coverage tool interactively:

1 Open the ExtractingDetailedCoverageDataExample example using openExample.

openExample('slcoverage/ExtractingDetailedCoverageDataExample');
2 Open the slvnvdemo_cv_small_controller model.
3 In the Simulink Editor, select Model Settings on the Modeling tab.

In the Configuration Parameters dialog box, on the “Coverage Pane” on page 3-2, select Enable
coverage analysis, which enables the coverage settings.

4 Under Coverage metrics, select the types of coverage that you want to record in the coverage
report. Click OK.

5 Simulate the model.

Simulink Coverage saves coverage data for the current run in the workspace object covdata and
cumulative coverage data in covCumulativeData, by default if you simulate using the Run
button. Simulink Coverage also saves these results to a .cvt file by default. At the end of the
simulation, the data appears in an HTML report that opens next to your model. For more
information on coverage data settings, see “Specify Coverage Options” on page 3-2.

You cannot run simulations if you select both the model coverage reporting and acceleration
options. If you set the simulation mode to Accelerator, Simulink Coverage does not record
coverage.

When you perform coverage analysis, you cannot select both block reduction and conditional
branch input optimization, because they interfere with coverage recording. See “Simulink
Optimizations and Model Coverage” on page 1-9 for more information.

5 Coverage Collection During Simulation

5-2

Modified Condition and Decision Coverage (MCDC) Definitions
in Simulink Coverage

Simulink Coverage by default uses the masking modified condition and decision coverage (MCDC)
definition for recording MCDC coverage results. Although you can change the MCDC definition that
Simulink Coverage uses during analysis to the unique-cause MCDC definition, there are some
differences in how Simulink Coverage records coverage for models depending on which definition you
use.

In this section...
“Differences between Masking MCDC and Unique-Cause MCDC in Simulink Coverage Coverage
Analysis” on page 5-3
“Certification Considerations for MCDC Coverage” on page 5-4
“Setting the (MCDC) Definition Used for Simulink Coverage Coverage Analysis” on page 5-4
“Modified Condition and Decision Coverage in Simulink Design Verifier” on page 5-5

Differences between Masking MCDC and Unique-Cause MCDC in
Simulink Coverage Coverage Analysis
Masking MCDC accounts for the masking of conditions in subexpressions, allowing for an increased
number of satisfied MCDC objectives compared to the unique-cause definition of MCDC. As a result,
some Simulink models that receive less than complete MCDC coverage using the unique-cause MCDC
definition receive increased coverage when using the masking MCDC definition. Consider the
following example, where two inputs to a Stateflow chart, condition A and condition C, cannot change
independently:

This input dependence results in dependent conditions for the expression contained within the
Stateflow chart:

For the expression (A||B)&&(C||D), changing the value of condition C also changes the value of
condition A. Due to the interdependence of conditions A and C, unique-cause MCDC for condition C
cannot be achieved:

 Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage

5-3

However, masking MCDC for condition C can be achieved, because masking MCDC allows the value
of condition A to change in the independence pair for condition C, as long as the subexpression (A||B)
remains true:

Certification Considerations for MCDC Coverage
DO-248C Discussion Paper #13 "Discussion of Statement Coverage, Decision Coverage and Modified
Condition/Decision Coverage" states that masking MCDC is acceptable for meeting the MCDC
objective of DO-178B certification.

Setting the (MCDC) Definition Used for Simulink Coverage Coverage
Analysis
By default, Simulink Coverage uses the masking MCDC definition during coverage analysis. There are
two ways to change the MCDC definition used for Simulink Coverage coverage analysis:

Use the Model Configuration Parameters to Set the MCDC Definition Used

1 Open the Configuration Parameters dialog box.
2 Set the CovMcdcMode parameter to Masking or Unique-Cause.

Use the cvtest Object to Set the MCDC Definition Used

Create a cvtest object for your model to set the mcdcMode to 'Masking' or 'UniqueCause':

cvt = cvtest(model)
cvt.options.mcdcMode = 'UniqueCause'
covdata = cvsim(cvt)

5 Coverage Collection During Simulation

5-4

Modified Condition and Decision Coverage in Simulink Design Verifier
Setting CovMcdcMode to 'UniqueCause' can result in differences between MCDC reporting in
Simulink Coverage and test generation in Simulink Design Verifier. Simulink Design Verifier always
uses the masking MCDC definition for test case generation. For more information, see “Modified
Condition and Decision Coverage in Simulink Design Verifier” on page 5-6.

See Also

More About
• “MCDC” (Simulink Design Verifier)

 Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage

5-5

Modified Condition and Decision Coverage in Simulink Design
Verifier

Depending on the settings you apply for Simulink Coverage coverage recording, there can be a
difference between the definition of modified condition and decision (MCDC) coverage used for model
coverage analysis in Simulink Coverage and the definition used for test case generation analysis in
Simulink Design Verifier.

MCDC Definitions for Simulink Coverage and Simulink Design Verifier
Simulink Design Verifier and Simulink Coverage represent MCDC objectives in two different ways:

• Simulink Coverage treats each condition of a logical expression as an MCDC objective.
• Simulink Design Verifier treats the true and false halves of each independence pair as separate

MCDC objectives.

The Simulink Design Verifier Results window shows Justified for any justified MCDC objectives. Click
on the corresponding View link to see the filter rule in the Simulink Design Verifier Analysis Filter
window.

Unsatisfiable or undecided MCDC objectives include a Justify link. Click on this link to create a
corresponding filter rule. Because every MCDC objective in Simulink Coverage corresponds to two
MCDC objectives in Simulink Design Verifier, the Simulink Design Verifier MCDC objectives are
justified in pairs.

For example, in the image below, when you click on the Justify link for the MCDC expression
expression for output with input port 4 false, creates a filter rule that justifies this
MCDC objective as well as the MCDC objective for when that expression is true.

Simulink Design Verifier always uses the masking MCDC definition for test case generation. By
default, Simulink Coverage also uses the masking MCDC definition when recording coverage.
However, if you set the CovMcdcMode model configuration parameter to 'UniqueCause', Simulink
Coverage instead uses the unique-cause MCDC definition when recording coverage. For information

5 Coverage Collection During Simulation

5-6

on the differences between the masking MCDC definition and the unique-cause MCDC definition, see
“Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage” on page 5-3.

Setting the CovMcdcMode model configuration parameter to 'UniqueCause' can result in
differences between MCDC reporting in Simulink Coverage and test generation in Simulink Design
Verifier. An example of this difference can be seen in analysis results for logical expressions
containing a mixture of AND and OR operators, as in this Stateflow transition.

Given that A, B, and C are each separate inputs, there are five possible ways to evaluate the condition
on the Stateflow transition, shown in the following table.

 A B C (A && B) || C
1 F x F F
2 F x T T
3 T F F F
4 T F T T
5 T T x T

Satisfying MCDC for a Boolean variable requires a pair of condition evaluations, showing that a
change in that variable alone changes the evaluation of the entire expression. In this example, MCDC
can be satisfied for C with either the pair 1, 2 or the pair 3, 4. In both of those cases, the value of the
expression changed because the value of C changed, while all other variable values stayed the same.

Each pair has a different set of values for A and B which are held constant, but each pair contains one
evaluation where C and out are true and one evaluation where C and out are false. To satisfy MCDC
for C, Simulink Design Verifier test generation analysis accepts any pair containing one evaluation of
true values and one evaluation of false values for C and out. In this example, Simulink Design Verifier
test generation analysis accepts not only pair 1, 2 and pair 3, 4 but also pair 1, 4 and pair 2, 3.
Simulink Coverage model coverage analysis using the unique-cause MCDC definition is satisfied only
by pair 1, 2 or by pair 3, 4.

The preceding example assumes that A, B, and C are all separate inputs. When input A is constrained
to be the same value as C, as in this model, only a subset of condition evaluations are possible.

 Modified Condition and Decision Coverage in Simulink Design Verifier

5-7

This subset of condition evaluations for the Stateflow transition is shown in the following table.

 A B C (A && B) || C
1 F x F F
4 T F T T
5 T T x T

Evaluations 2 and 3 are no longer possible, so neither pair 1, 2 nor pair 3, 4 is possible. As a result,
unique-cause MCDC for C can no longer be satisfied in Simulink Coverage model coverage analysis.
Since pair 1, 4 is still possible, however, Simulink Design Verifier test generation analysis reports that
MCDC for C is satisfiable.

The complexity of MCDC analysis for logical expressions with a mixture of AND and OR operators
causes this difference between results from Simulink Coverage set to unique-cause MCDC analysis
and Simulink Design Verifier. The defaultCovMcdcMode model configuration parameter value of
'Masking' does not cause this discrepancy. However, if you require the use of unique-cause MCDC
analysis in Simulink Coverage, you can minimize this effect by using the IndividualObjectives
test suite optimization for test generation analysis in Simulink Design Verifier For more information,
see the Tip section of “Test suite optimization” (Simulink Design Verifier).

See Also

More About
• “MCDC” (Simulink Design Verifier)

5 Coverage Collection During Simulation

5-8

Logical Operator Cascade Patterns
This model includes various patterns of cascaded Logical Operator blocks. This example illustrates
the criteria by which logic block cascades are identified for the purpose of model coverage analysis
for the MCDC metric.

 Logical Operator Cascade Patterns

5-9

Analyzing MCDC for Cascaded Logic Blocks
This example illustrates how Simulink® Coverage™ records the MCDC metric for a cascade of
Logical Operator blocks.

Example Model

In Simulink, there are various ways to implement Boolean logic, such as through the use of an if
statement in a MATLAB Function block, a conditional transition in a Stateflow Chart, or a
combination of multiple Logical Operator blocks connected together in a cascade.

The example model slvnvdemo_cv_logic_cascade implements the same Boolean expression
through the use of MATLAB code in a MATLAB Function block as well as with a cascade of Logical
Operator blocks.

Use the following command to open the model slvnvdemo_cv_logic_cascade:

open_system('slvnvdemo_cv_logic_cascade');

Open the MATLAB Function block to see the associated function.

open_system('slvnvdemo_cv_logic_cascade/MATLAB Function')

5 Coverage Collection During Simulation

5-10

In the MATLAB Function block, if (a && (b | | c)) is true, then the signal Data1 will be output;
otherwise, the signal Data2 is output.

Open the subsystem 'Logic Cascade' using the following command and note that this subsystem
implements the exact same logic using Logical Operator blocks and a Switch.

open_system('slvnvdemo_cv_logic_cascade/Logic Cascade');

Finally, open the Signal Builder and note that there are three combinations given for the Boolean
inputs a, b, and c. These combinations are FFF, TFT, and TTT.

open_system('slvnvdemo_cv_logic_cascade/Signal Builder');

 Analyzing MCDC for Cascaded Logic Blocks

5-11

5 Coverage Collection During Simulation

5-12

Close the Signal Builder.

close_system('slvnvdemo_cv_logic_cascade/Signal Builder', 0);

Comparing MCDC Results in the Coverage Report

Simulate the model and generate a Coverage Report.

testObj = cvtest('slvnvdemo_cv_logic_cascade');
testObj.settings.decision = 1;
testObj.settings.condition = 1;
testObj.settings.mcdc = 1;
covdata = cvsim(testObj); % Simulate for coverage
cvhtml('exampleReport.html',covdata); % Generate Coverage Report

MCDC Results for MATLAB Function block

In the generated report, navigate to the details for the MATLAB Function block.

 Analyzing MCDC for Cascaded Logic Blocks

5-13

The MCDC results for the if statement in the MATLAB Function block are as would be expected,
given the specified inputs.

MCDC Results for Logic Cascade

Next examine the results for the logic cascade. Recall that this combination of blocks implements the
same logic as the MATLAB code in the MATLAB Function block; therefore, we would expect that the
MCDC results would be the same, as well.

5 Coverage Collection During Simulation

5-14

Let's first take a look at the upstream Or_Block.

Notice that the MCDC summary for this block has a link with the text "see And_Block", referring
to the Logical Operator at the root of the cascade. Click on this link to be taken to the section of the
report showing results for this block.

 Analyzing MCDC for Cascaded Logic Blocks

5-15

The Logical Operator block at the root of the cascade (in this case And_Block) reports the MCDC
results for the entire cascade.

The details for the MCDC analysis of the cascade first show a link illustrating how many blocks are
included in the cascade. Clicking on the link "Includes 2 blocks" will bring up the model and
highlight the two blocks included in the cascade (Or_Block and And_Block).

This section of the report then shows the Boolean expression represented by the cascade, in this case
C1 && (C2 | | C3), where C1, C2, and C3 are the conditions which correspond to the three inputs to
the cascade. For each condition, the table illustrates the associated block and its input (shown in
parenthesis) as well as the MCDC result. These results indicate that the input combinations TTx, Fxx,

5 Coverage Collection During Simulation

5-16

and TFT have all been exercised, but TFF has not. This matches the expectation given the inputs
generated by the Signal Builder (TTT, FFF, and TFT).

Furthermore, as expected, both the Boolean expression and MCDC results shown for this cascade
match what was shown for the if statement implementing the equivalent logic in the MATLAB
Function block.

Coverage Informer and Model Coloring

Display coverage results on the model using the following command:

cvmodelview(covdata);

As was shown in the Coverage Report, MCDC objectives are not recorded for the individual Logical
Operator blocks in a cascade; rather, MCDC objectives are recorded for the Boolean expression
represented by the combination of blocks in the cascade, and results are reported on the final block
in the cascade. The highlighting of the model reflects this, as well. Given the input combinations FFF,
TFT, and TTT for the three inputs a, b, and c, Or_Block receives full coverage, because all of the
block's Condition coverage objectives have been satisfied. However, because there are MCDC
objectives associated with this cascade which have not been satisfied, And_block (the final block in
the cascade) is highlighted in red.

Hover over And_block for more information.

 Analyzing MCDC for Cascaded Logic Blocks

5-17

The tooltip correctly reports that this block does not receive full coverage, because some MCDC
objectives for the cascade are not satisfied.

Command Line

You can also retrieve the MCDC results for the logic block cascade from the MATLAB command line
using mcdcinfo. Again, MCDC objectives for the cascade will be found on the final block in the
cascade.

[coverage_casc, description_casc] = mcdcinfo(covdata, 'slvnvdemo_cv_logic_cascade/Logic Cascade/And_Block')
description_casc.condition(1)
description_casc.condition(2)
description_casc.condition(3)

coverage_casc =

 1 3

description_casc =

 struct with fields:

 text: 'C1 && (C2 || C3)'
 condition: [1x3 struct]
 isFiltered: 0

5 Coverage Collection During Simulation

5-18

 filterRationale: ''
 justifiedCoverage: 0

ans =

 struct with fields:

 text: 'C1 (And_Block In1)'
 achieved: 1
 trueRslt: 'TFT'
 falseRslt: 'Fxx'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 text: 'C2 (Or_Block In1)'
 achieved: 0
 trueRslt: 'TTx'
 falseRslt: '(TFF)'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 text: 'C3 (Or_Block In2)'
 achieved: 0
 trueRslt: 'TFT'
 falseRslt: '(TFF)'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

Other blocks that are members of the cascade will not exhibit MCDC objectives.

[coverage_or, description_or] = mcdcinfo(covdata, 'slvnvdemo_cv_logic_cascade/Logic Cascade/Or_Block')

coverage_or =

 []

 Analyzing MCDC for Cascaded Logic Blocks

5-19

description_or =

 []

Short-Circuiting of Boolean Expressions for MCDC

In example model slvnvdemo_cv_logic_cascade, coverage settings are set such that Logical
Operator blocks are treated as short-circuiting.

Due to this setting, when analyzing a cascade of Logical Operator blocks, the operators in the
corresponding Boolean expression are treated as short-circuiting for the purposes of MCDC. As
illustrated by the results shown above, this means that MCDC recognizes short-circuiting that occurs
both within and across Logical Operator blocks. As such, the MCDC results for the cascade of Logical
Operator blocks matches those of the if statement in the MATLAB Function block, as the latter is
always treated as short-circuiting.

Short-circuiting within a block

Notice that in the example above, the True Out MCDC objective outcome for C2 is TTx, indicating
that when C1 and C2 are both true, C3 is inconsequential due to short-circuiting within the
Or_Block.

Short-circuiting across multiple blocks

Furthermore, consider the False Out MCDC objective outcome for C1, Fxx. This outcome illustrates
how MCDC analysis recognizes short-circuiting across blocks. Because the first input to And_Block
is false, the second input is short-circuited. Subsequently, for the purposes of MCDC, this short-
circuits Or_Block (and both of its inputs) entirely. The short-circuiting behavior of MCDC for logic
block cascades occurs based on the precedence of operations in the corresponding Boolean
expression (regardless of the execution order of the Logical Operator blocks during simulation).

Non-short-circuiting Boolean expressions

You can also treat the Boolean expression represented by a cascade of Logical Operator blocks as
non-short-circuiting during MCDC analysis, provided that the masking definition of MCDC is being
used. To do so, set the parameter CovLogicBlockShortCircuit to "off" and ensure that
CovMcdcMode is set to "Masking". These are, in fact, the default settings for these parameters
when creating a new model.

Note, if CovLogicBlockShortCircuit is "off" and CovMcdcMode is set to "UniqueCause" then
the Logical Operator blocks in a cascade will be analyzed individually for the purposes of MCDC, and
MCDC for the Boolean expression represented by the cascade as a whole will not be calculated.

Notice that when the cascade in this example is not treated as short-circuiting, some MCDC
objectives are no longer satisfied by the given inputs.

set_param('slvnvdemo_cv_logic_cascade', 'CovLogicBlockShortCircuit', 'off');
set_param('slvnvdemo_cv_logic_cascade', 'CovMcdcMode', 'Masking');
covdata_non_sc = cvsim('slvnvdemo_cv_logic_cascade'); % Simulate for coverage with logic block short-circuiting off
cvhtml('exampleReport_non_sc.html',covdata_non_sc); % Generate Coverage Report

5 Coverage Collection During Simulation

5-20

 Analyzing MCDC for Cascaded Logic Blocks

5-21

View Coverage Results in a Model
In this section...
“Overview of Model Coverage Highlighting” on page 5-22
“Enable Coverage Highlighting” on page 5-22
“View Coverage Details” on page 5-24

Overview of Model Coverage Highlighting
When you simulate a Simulink model, you can configure your model to provide visual results that
enable you to see which objects failed to record 100% coverage. After the simulation:

• In the model window, model objects are highlighted in certain colors according to what coverage
was recorded:

• Green indicates that an object received full coverage during simulation.
• Green with a dashed border indicates that an object had incomplete coverage that you
justified.

• Red indicates that an object received incomplete coverage.
• Gray with a dashed border indicates that you excluded an object from coverage.
• Objects with no color highlighting did not receive coverage.

• When you place your cursor over a colored object, you see a tooltip with details about the
coverage recorded for that block. For subsystems and Stateflow charts, the coverage tooltip lists
the summary coverage for all objects in that subsystem or chart. For other blocks, the coverage
tooltip lists specific details about the objects that did not receive 100% coverage.

The simulation highlights blocks that received these types of model coverage:

• “Execution Coverage (EC)” on page 1-3
• “Decision Coverage (DC)” on page 1-3
• “Condition Coverage (CC)” on page 1-3
• “Modified Condition/Decision Coverage (MCDC)” on page 1-4
• “Relational Boundary Coverage” on page 1-7
• “Saturate on Integer Overflow Coverage” on page 1-7
• “Objectives and Constraints Coverage” on page 1-6

Enable Coverage Highlighting
Your model will receive coverage highlighting if you simulate the model using the Run button. After
simulation, you can see which model objects received full, partial, or no coverage.

If you simulate without the Run button, or load coverage data, you can click Highlight model with
coverage results in the Results Explorer to enable model coverage highlighting. To open the results
explorer, in the Apps tab, select Coverage Analyzer. Then click Results Explorer. For more
information, see “Accessing Coverage Data from the Results Explorer” on page 3-7. You can also use
cvmodelview to enable model highlighting.

5 Coverage Collection During Simulation

5-22

Highlighted Coverage Results

Examples of highlighted model objects in colors that correspond to the recorded coverage are:

Green: Full Coverage

The Switch block received 100% coverage, as indicated by the green highlighting and the information
in the coverage tooltip.

Green with Dashed Border: Justified Coverage

The Relational Operator block received justified coverage, as indicated by the green highlighting with
a dashed border and the information in the coverage tooltip.

Red: Partial Coverage

The shift_logic Stateflow chart received this coverage:

Inside the shift_logic Stateflow chart, the gear_state substate was never fourth.

 View Coverage Results in a Model

5-23

Two of the data ports in the Multiport Switch block were never executed.

Gray with Dashed Border: Filtered Coverage

The fuel_rate_control subsystem is highlighted in gray because it was excluded from coverage
recording.

No Coloring: Coverage Not Recorded

The Inport block is not highlighted because it does not receive coverage recording.

View Coverage Details
After you highlight coverage results on the model, you can view coverage details for each model
element in the Coverage Details window. To open the Coverage Details window, click the

5 Coverage Collection During Simulation

5-24

Coverage Details icon in the lower-left corner of the Simulink block diagram, and then click Open
Coverage Details:

You can then click a model object to view its coverage details.

 View Coverage Results in a Model

5-25

Model Coverage for Multiple Instances of a Referenced Model
In this section...
“About Coverage for Model Blocks” on page 5-26
“Record Coverage for Multiple Instances of a Referenced Model” on page 5-26

About Coverage for Model Blocks
Model blocks do not receive coverage directly; if you set the simulation mode of the Model block to
Normal , SIL, or PIL, the Simulink Coverage software records coverage for the model referenced
from the Model block. If the simulation mode for the Model block is anything other than Normal,
SIL, or PIL, the software does not record coverage for the referenced model.

Your Simulink model can contain multiple Model blocks with the same simulation mode that
reference the same model. When the software records coverage, each instance of the referenced
model can be exercised with different inputs or parameters, possibly resulting additional coverage
data for the referenced model.

The Simulink Coverage software records coverage for all instances of the referenced model with the
same simulation mode and combines the coverage data for that referenced model in the final results.

Record Coverage for Multiple Instances of a Referenced Model
To see how this works, simulate a model twice. The first time, you record coverage for one Model
block in Normal simulation mode. The second time, you record coverage for two Model blocks in
Normal simulation mode. Both Model blocks reference the same model.

• “Record Coverage for the First Instance of the Referenced Model” on page 5-26
• “Record Coverage for the Second Instance of the Referenced Model” on page 5-30

Record Coverage for the First Instance of the Referenced Model

Record coverage for one Model block.

1 Open your top-level model. This example uses the sldemo_mdlref_datamngt model:

5 Coverage Collection During Simulation

5-26

This model contains three Model blocks that reference the
sldemo_mdlref_counter_datamngt example model. The corners of each Model block indicate
the value of their Simulation mode parameter:

• Counter1 — Simulation mode: Normal
• Counter2 — Simulation mode: Accelerator
• Counter3 — Simulation mode: Accelerator

2 Configure your model to record coverage during simulation:

a In the Simulink Editor, select Model Settings on the Modeling tab.
b On the Coverage pane of the Configuration Parameters dialog box, select:

• Enable coverage analysis
• Referenced Models

c Click Select Models. In the Select Models for Coverage Analysis dialog box, you can select
only those referenced models whose simulation mode is Normal, SIL, or PIL. In this
example, only the first Model block that references sldemo_mdlref_counter_datamngt is
available for recording coverage.

 Model Coverage for Multiple Instances of a Referenced Model

5-27

d Click OK to exit the Select Models for Coverage Analysis dialog box.
3 Click OK to save your coverage settings and exit the Configuration Parameters dialog box.
4 Simulate your model.

When the simulation is complete, the HTML coverage report opens. In this example, the
coverage data for the referenced model, sldemo_mdlref_counter_datamngt, shows that the
model achieved 69% coverage.

5 Click the hyperlink in the report for the referenced model.

The detailed coverage report for the referenced model opens, and the referenced model appears
with highlighting to show coverage results.

Note the following about the coverage for the Range Check subsystem in this example:

• The Saturate Count block executed 100 times. This block has four Boolean decisions. Decision
coverage was 50%, because two of the four decisions were never recorded:

• The decision input > lower limit was never false.
• The decision input >= upper limit was never true.

5 Coverage Collection During Simulation

5-28

• The DetectOverflow function executed 50 times. This script has five decisions. The
DetectOverflow script achieved 60% coverage because two of the five decisions were never
recorded:

• The expression count >= CounterParams.UpperLimit was never true.
• The expression count > CounterParams.LowerLimit was never false.

 Model Coverage for Multiple Instances of a Referenced Model

5-29

Record Coverage for the Second Instance of the Referenced Model

Record coverage for two Model blocks. Set the simulation mode of a second Model block to Normal
and simulate the model. In this example, the Counter2 block adds to the coverage for the model
referenced from both Model blocks.

1 In the Simulink Editor for your top-level model, right-click a second Model block and select
Block Parameters (ModelReference).

The Function Block Parameters dialog box opens.
2 Set the Simulation mode parameter to Normal.
3 Click OK to save your change and exit the Function Block Parameters dialog box.

5 Coverage Collection During Simulation

5-30

The corners of the Model block change to indicate that the simulation mode for this block is
Normal, as in the example below.

4 To make sure that the software records coverage for both instances of this model:

a In the Simulink Editor, select Model Settings on the Modeling tab.
b On the Coverage pane, select Enable coverage analysis.
c Select Referenced Models and click Select Models.

In the Select Models for Coverage Analysis dialog box, verify that both instances of the
referenced model are selected. In this example, the list now looks like the following.

If you have multiple instances of a referenced model in Normal mode, you can choose to
record coverage for all of them or none of them.

d Click OK to close the Select Models for Coverage Analysis dialog box.
5 Simulate your model again.
6 When the simulation is complete, open the HTML coverage report.

In this example, the referenced model achieved 85% coverage. Note the following about the
coverage data for the Range Check subsystem:

 Model Coverage for Multiple Instances of a Referenced Model

5-31

• The Saturate Count block executed 179 times. The simulation of the Counter2 block executed
the Saturate Count block an additional 79 times, for a total of 179 executions.

The decision input >= upper limit was true 21 times during this simulation, compared
to 0 during the first simulation. The fourth decision input > lower limit was still never
false. Three out of four decisions were recorded during simulation, so this block achieved
75% coverage.

• The DetectOverflow function executed 100 times. The simulation of the Counter2 block
executed the DetectOverflow function an additional 50 times.

The DetectOverflow function has five decisions. The expression count >=
CounterParams.UpperLimit was true 21 times during this simulation, compared to 0
during the first simulation. The expression count > CounterParams.LowerLimit was
never false. Four out of five decisions were recorded during simulation, so the
DetectOverflow function achieved 80% coverage.

5 Coverage Collection During Simulation

5-32

 Model Coverage for Multiple Instances of a Referenced Model

5-33

Obtain Cumulative Coverage for Reusable Subsystems and
Stateflow® Constructs

This example shows how to create and view cumulative coverage results for a model with a reusable
subsystem.

Simulink® Coverage™ provides cumulative coverage for multiple instances of identically configured:

• Reusable subsystems
• Stateflow™ constructs

To obtain cumulative coverage, you add the individual coverage results at the command line. You can
get cumulative coverage results for multiple instances across models and test harnesses by adding
the individual coverage results.

Open example model

At the MATLAB® command line, type:

model = 'slvnvdemo_cv_mutual_exclusion';
open_system(model);

This model has two instances of a reusable subsystem. The instances are named Subsystem 1 and
Subsystem 2.

Get decision coverage for Subsystem 1

Execute the commands for Subsystem 1 decision coverage:

testobj1 = cvtest([model '/Subsystem 1']);
testobj1.settings.decision = 1;
covobj1 = cvsim(testobj1);

Get decision coverage for Subsystem 2

Execute the commands for Subsystem 2 decision coverage:

5 Coverage Collection During Simulation

5-34

testobj2 = cvtest([model '/Subsystem 2']);
testobj2.settings.decision = 1;
covobj2 = cvsim(testobj2);

Add coverage results for Subsystem 1 and Subsystem 2

Execute the command to create cumulative decision coverage for Subsystem 1 and Subsystem 2:

covobj3 = covobj1 + covobj2;

Generate coverage report for Subsystem 1

Create an HTML report for Subsystem 1 decision coverage:

cvhtml('subsystem1',covobj1)

The report indicates that decision coverage is 50% for Subsystem 1. The true condition for enable
logical value is not analyzed.

Generate coverage report for Subsystem 2

Create an HTML report for Subsystem 2 decision coverage:

cvhtml('subsystem2',covobj2)

The report indicates that decision coverage is 50% for Subsystem 2. The false condition for enable
logical value is not analyzed.

Generate coverage report for cumulative coverage of Subsystem 1 and Subsystem 2

Create an HTML report for cumulative decision coverage for Subsystem 1 and Subsystem 2:

cvhtml('cum_subsystem',covobj3)

Cumulative decision coverage for reusable subsystems Subsystem 1 and Subsystem 2 is 100%. Both
the true and false conditions for enable logical value are analyzed.

 Obtain Cumulative Coverage for Reusable Subsystems and Stateflow® Constructs

5-35

Trace Coverage Results to Requirements by Using Simulink
Test and Simulink Requirements

If you run test cases in Simulink Test that are linked to requirements in Simulink Requirements, the
aggregated coverage report details the requirements implemented by each model element and the
tests that verify those requirements.

Prerequisites for Tracing Requirements Links
To view linked requirements details in your coverage report, you must:

• Link to test cases from requirements in Simulink Requirements. For more information, see “Link
to Test Cases from Requirements” (Simulink Requirements) and “Perform Functional Testing and
Analyze Test Coverage” on page 10-9.

• Run your test cases through the Simulink Test Manager. For more information, see
“Requirements-Based Testing for Model Development” (Simulink Test).

• Record the aggregated coverage results for at least two test cases.

This example shows how to view the links between test cases, model elements, and linked
requirements in a coverage report.

Open the slreqCCProjectStart Project and Load Test Cases

1 Open the slreqCCProjectStart project.

slreqCCProjectStart
2 Load the DriverSwRequest_Tests.mldatx test data suite and open the Simulink Test

Manager.

sltest.testmanager.load('DriverSwRequest_Tests.mldatx')
sltest.testmanager.view

3 In the Simulink Test Manager, click the DriverSwRequest_Tests test file.
4 To enable decision coverage collection for the test case, in the right pane under Coverage

Settings:

• Select Record coverage for system under test.
• Under Coverage Metrics, select Decision.
• Save your changes.

5 Run the loaded test cases.

resultObj = sltest.testmanager.run
6 When the test finishes, navigate to the test case results in the Test Manager. The Aggregated

Coverage Results section displays the coverage for the analyzed model.

5 Coverage Collection During Simulation

5-36

7 Click Report to create a coverage report.

The coverage report shows requirements details for each model element, including linked
requirements, which tests verify the requirements, and which runs are associated with each
verification test.

 Trace Coverage Results to Requirements by Using Simulink Test and Simulink Requirements

5-37

The Decisions analyzed section links to the first test case that reached each decision. To see other
test cases that also reached a decision, hover over the listed test case. For more information, see
“Trace Coverage Results to Associated Test Cases” on page 5-41.

See Also

More About
• “Requirement Testing Details” on page 6-20
• “Link to Test Cases from Requirements” (Simulink Requirements)
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9

5 Coverage Collection During Simulation

5-38

Assess Coverage Results from Requirements-Based Tests
You can scope coverage results to linked requirements-based tests from the Simulink Test Manager.
The aggregated coverage results are scoped such that each test only contributes coverage for the
corresponding model elements that implement the requirements verified by that test.

Rationale for Scoping Coverage Results to Linked Requirements-Based
Tests
If your model-based design workflow requires that models are fully exercised by requirements-based
tests, you can scope your coverage results to only those outcomes exercised by requirements-based
tests. As an example, DO-178C suggests that structural coverage information collected during
requirements-based testing should confirm that the degree of structural coverage is appropriate and
satisfies the software requirements. When you enable Scope coverage results to linked
requirements, the aggregated coverage results are scoped such that each test only contributes
coverage for the corresponding model elements that implement the requirements verified by that
test.

You define requirements and link them to model elements and tests by using Simulink Requirements.
Scoping coverage results to linked requirements allows you to produce evidence that your model
coverage comes from the intended requirements-based tests and is not a side effect of an unrelated
test. Scoping coverage results to linked requirements can also reveal inadequate requirement linking
or testing gaps that might otherwise be difficult to detect in aggregated coverage results.

Prerequisites for Scoping Coverage Results to Linked Requirements-
Based Tests
To scope coverage results to linked requirements, you must:

• Have licenses for Simulink Test and Simulink Coverage.
• Link requirements in Simulink Requirements to model elements and to test cases in Simulink Test

that verify the requirements. For more information on creating requirements links, see “Link
Blocks and Requirements” (Simulink Requirements).

Note You cannot create or edit requirements links or view detailed information about the
requirements without a Simulink Requirements license.

• Collect coverage by using the Simulink Test Manager, and enable Scope coverage results to
linked requirements for the aggregated coverage results. For more information on setting up
coverage collection in the Simulink Test Manager, see “Collect Coverage in Tests” (Simulink Test).

Coverage Reporting for Aggregated Coverage Results Scoped to
Linked Requirements
The following coverage report shows requirements testing details and coverage details for a
MultiPortSwitch block called MPSwitch1.

 Assess Coverage Results from Requirements-Based Tests

5-39

In the example above, MPSwitch1 implements Requirement 1, which is verified by Testcase 1.
Therefore, Testcase 1 attempts to provide full coverage for MPSwitch1. Scoping coverage results to
linked requirements makes it easier to assess the extent to which MPSwitch1 was exercised by
Testcase 1 when viewing aggregated coverage results.

The first decision outcome is successfully exercised by Testcase 1 and is reported as satisfied. The
second decision outcome is not exercised by Testcase 1, but is reached by a test unrelated to
Requirements 1. The coverage report therefore reports this decision as not satisfied.

The third decision outcome is not exercised by any test and is therefore reported as not satisfied.

Example
For an example of how to scope coverage results to linked requirements from the Simulink Test
Manager, see “Test Coverage for Requirements-Based Testing” (Simulink Test).

See Also

More About
• “Link Blocks and Requirements” (Simulink Requirements)
• “Collect Coverage in Tests” (Simulink Test)

5 Coverage Collection During Simulation

5-40

Trace Coverage Results to Associated Test Cases
If you record aggregated coverage results for test cases in Simulink Test with your model in Normal
or SIL/PIL mode, the aggregated coverage report links to the test cases associated with each model
element.

Prerequisites for Tracing Associated Test Cases to Coverage Results
To view associated test cases in your coverage report, you must record aggregated coverage results
for at least two test cases through the Simulink Test Manager, or produce a coverage report for
cumulative coverage results from the Results Explorer. For more information, see “Perform
Functional Testing and Analyze Test Coverage” on page 10-9.

Note Test case traceability and unit test aggregation for MCDC coverage are only supported for
Masking Mode. Unique-cause MCDC is not supported for these features.

Aggregate Unit-Level Coverage Data into Top-Level Model Coverage
This example shows how to generate an aggregated coverage report that includes results from both
integration and unit tests.

Load the Test Cases into the Simulink® Test™ Manager

The slcovTestTraceabilityExample.mldatx test data is configured to record decision
coverage.

sltest.testmanager.load('slcovTestTraceabilityExample.mldatx');
sltest.testmanager.view

Run the Test Cases

From the Simulink Test Manager, select the Combined Integration and Unit Tests test suite
and click Run. This test suite contains two sub-suites, Integration Tests and Unit Tests.
Alternatively, run the following command:

results = sltest.testmanager.run;

Access the Coverage Report for the Integration Tests

From the Results and Artifacts pane of the Simulink Test Manager, select the results for
Integration Tests. From the Aggregated Coverage Results section, click the Report button.

The coverage report for this test suite only shows coverage results for the integration tests.

 Trace Coverage Results to Associated Test Cases

5-41

View Subsystem Details

View the coverage details for the subsystem SwitchUnit2. Notice that this subsystem does not receive
full coverage. The first three decision outcomes are covered by integration test run T1. The fourth
decision outcome for the MPSwitch block cannot be satisfied in the integrated system.

Access the Coverage Report for the Unit Tests

From the Results and Artifacts pane of the Simulink Test Manager, select the results for Unit
Tests. From the Aggregated Coverage Results section, click the Report button.

The coverage report for this test suite only shows coverage results for the unit tests of the
SwitchUnit2 subsystem that were recorded by using subsystem test harnesses.

View Subsystem Details

View the coverage details for the subsystem SwitchUnit2. Notice that this subsystem does receive full
coverage from the unit tests.

5 Coverage Collection During Simulation

5-42

Locate the Combined Unit-Level and System-Level Coverage Report

From the Results and Artifacts pane of the Simulink Test Manager, select the results for Combined
Integration and Unit Tests. The results show two coverage reports available--one report for
the SwitchUnit2 subsystem tested by the unit tests and one report for the top-level model that
incorporates results from both the unit and integration tests.

Access Aggregated Coverage Report for the Top-Level Model

When you click the Report button for the top-level model, Simulink Coverage aggregates the
integration and unit tests into a system-level coverage report.

 Trace Coverage Results to Associated Test Cases

5-43

View Subsystem Details

Notice that the subsystem receives full coverage. The first three decision outcomes for the MPSwitch
MultiPortSwitch block are covered by the integration test run T1. The fourth decision outcome for the
MPSwitch MultiPortSwitch block is covered by unit test run U1.2.

See Also

More About
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9
• “Aggregated Tests” on page 6-11

5 Coverage Collection During Simulation

5-44

Model Coverage for MATLAB Functions

In this section...
“About Model Coverage for MATLAB Functions” on page 5-45
“Types of Model Coverage for MATLAB Functions” on page 5-45
“How to Collect Coverage for MATLAB Functions” on page 5-46
“Examples: Model Coverage for MATLAB Functions” on page 5-47

About Model Coverage for MATLAB Functions
The Simulink Coverage software simulates a Simulink model and reports model coverage data for the
decisions and conditions of code in MATLAB Function blocks. Model coverage only supports coverage
for MATLAB functions configured for code generation.

For example, consider the following if statement:

if (x > 0 || y > 0)
 reset = 1;

The if statement contains a decision with two conditions (x > 0 and y > 0). The Simulink
Coverage software verifies that all decisions and conditions are taken during the simulation of the
model.

Types of Model Coverage for MATLAB Functions
The types of model coverage that the Simulink Coverage software records for MATLAB functions
configured for code generation are:

• “Decision Coverage” on page 5-45
• “Condition and MCDC Coverage” on page 5-46
• “Simulink Design Verifier Coverage” on page 5-46
• “Relational Boundary Coverage” on page 5-46

Decision Coverage

During simulation, the following MATLAB Function block statements are tested for decision coverage:

• Function header — Decision coverage is 100% if the function or local function is executed.
• if — Decision coverage is 100% if the if expression evaluates to true at least once, and false

at least once.
• switch — Decision coverage is 100% if every switch case is taken, including the fall-through

case.
• for — Decision coverage is 100% if the equivalent loop condition evaluates to true at least once,

and false at least once.
• while — Decision coverage is 100% if the equivalent loop condition evaluates to true at least

once, and evaluates to false at least once.

 Model Coverage for MATLAB Functions

5-45

Condition and MCDC Coverage

During simulation, in the MATLAB Function block function, the following logical conditions are tested
for condition and MCDC coverage:

• if statement conditions
• Logical expressions in assignment statements

Simulink Design Verifier Coverage

The following MATLAB functions are active in code generation and in Simulink Design Verifier:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

When you specify the Objectives and Constraints coverage metric in the Coverage pane of the
Configuration Parameters dialog box, the Simulink Coverage software records coverage for these
functions.

Each of these functions evaluates an expression expr, for example, sldv.test(expr), where expr
is a valid Boolean MATLAB expression. Simulink Design Verifier coverage measures the number of
time steps that the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for that function is
100%. Otherwise, the Simulink Coverage software reports coverage for that function as 0%.

For an example of coverage data for Simulink Design Verifier functions in a coverage report, see
“Simulink Design Verifier Coverage” on page 6-37.

Relational Boundary Coverage

If the MATLAB function block contains a relational operation, the relational boundary coverage
metric applies to this block.

If the MATLAB function block calls functions containing relational operations multiple times, the
relational boundary coverage reports a cumulative result over all instances where the function is
called. If a relational operation in the function uses operands of different types in the different calls,
relational boundary coverage uses tolerance rules for the stricter operand type. For instance, if a
relational operation uses int32 operands in one call, and double operands in another call, relational
boundary coverage uses tolerance rules for double operands.

For information on the tolerance rules and the order of strictness of types, see “Relational Boundary
Coverage” on page 1-7.

How to Collect Coverage for MATLAB Functions
When you simulate your model, the Simulink Coverage software can collect coverage data for
MATLAB functions configured for code generation. You enable model coverage from the Coverage
app.

You collect model coverage for MATLAB functions as follows:

5 Coverage Collection During Simulation

5-46

• Functions in a MATLAB Function block
• Functions in an external MATLAB file

To collect coverage for an external MATLAB file, Coverage pane of the Configuration Parameters
dialog box, select Coverage for MATLAB files.

• Simulink Design Verifier functions:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

To collect coverage for these functions, on the Coverage pane of the Configuration Parameters
dialog box, select the Objectives and Constraints coverage metric.

The following section provides model coverage examples for each of these situations.

Examples: Model Coverage for MATLAB Functions
• “Model Coverage for MATLAB Function Blocks” on page 5-47
• “Model Coverage for MATLAB Functions in an External File” on page 5-54
• “Model Coverage for Simulink Design Verifier MATLAB Functions” on page 5-55

Model Coverage for MATLAB Function Blocks

Simulink Coverage software measures model coverage for functions in a MATLAB Function block.

The following model contains two MATLAB functions in its MATLAB Function block:

In the Configuration Parameters dialog box, on the Solver pane, under Solver selection, the
simulation parameters are set as follows:

• Type — Fixed-step
• Solver — discrete (no continuous states)
• Fixed-step size (fundamental sample time) — 1

The MATLAB Function block contains two functions:

• The top-level function, run_intersect_test, sends the coordinates for two rectangles, one
fixed and the other moving, as arguments to rect_intersect.

• The local function, rect_intersect, tests for intersection between the two rectangles. The
origin of the moving rectangle increases by 1 in the x and y directions with each time step.

 Model Coverage for MATLAB Functions

5-47

The coordinates for the origin of the moving test rectangle are represented by persistent data x1 and
y1, which are both initialized to -1. For the first sample, x1 and y1 both increase to 0. From then on,
the progression of rectangle arguments during simulation is as shown in the following graphic.

The fixed rectangle is shown in bold with a lower-left origin of (2,4) and a width and height of 2. At
time t = 0, the first test rectangle has an origin of (0,0) and a width and height of 2. For each
succeeding sample, the origin of the test rectangle increments by (1,1). The rectangles at sample
times t = 2, 3, and 4 intersect with the test rectangle.

The local function rect_intersect checks to see if its two rectangle arguments intersect. Each
argument consists of coordinates for the lower-left corner of the rectangle (origin), and its width and
height. x values for the left and right sides and y values for the top and bottom are calculated for
each rectangle and compared in nested if-else decisions. The function returns a logical value of 1
if the rectangles intersect and 0 if they do not.

Scope output during simulation, which plots the return value against the sample time, confirms the
intersecting rectangles for sample times 2, 3, and 4 .

5 Coverage Collection During Simulation

5-48

After the simulation, the model coverage report appears in a browser window. After the summary in
the report, the Details section of the model coverage report reports on each parts of the model.

The model coverage report for the MATLAB Function block shows that the block itself has no
decisions of its own apart from its function.

The following sections examine the model coverage report for the example model in reverse function-
block-model order. Reversing the order helps you make sense of the summary information at the top
of each section.

Coverage for the MATLAB Function run_intersect_test

Model coverage for the MATLAB Function block function run_intersect_test appears under the
linked name of the function. Clicking this link opens the function in the editor.

Below the linked function name is a link to the model coverage report for the parent MATLAB
Function block that contains the code for run_intersect_test.

 Model Coverage for MATLAB Functions

5-49

The top half of the report for the function summarizes its model coverage results. The coverage
metrics for run_intersect_test include decision, condition, and MCDC coverage. You can best
understand these metrics by examining the code for run_intersect_test.

Lines with coverage elements are marked by a highlighted line number in the listing:

• Line 1 receives decision coverage on whether the top-level function run_intersect_test is
executed.

• Line 6 receives decision coverage for its if statement.
• Line 14 receives decision coverage on whether the local function rect_intersect is executed.
• Lines 27 and 30 receive decision, condition, and MCDC coverage for their if statements and

conditions.

Each of these lines is the subject of a report that follows the listing.

The condition right1 < left2 in line 30 is highlighted in red. This means that this condition
was not tested for all of its possible outcomes during simulation. Exactly which of the outcomes
was not tested is in the report for the decision in line 30.

5 Coverage Collection During Simulation

5-50

The following sections display the coverage for each run_intersect_test decision line. The
coverage for each line is titled with the line itself, which if clicked, opens the editor to the designated
line.

Coverage for Line 1

The coverage metrics for line 1 are part of the coverage data for the function run_intersect_test.

The first line of every MATLAB function configured for code generation receives coverage analysis
indicative of the decision to run the function in response to a call. Coverage for
run_intersect_test indicates that it executed at least once during simulation.

Coverage for Line 6

The Decisions analyzed table indicates that the decision in line 6, if isempty(x1), executed a total
of eight times. The first time it executed, the decision evaluated to true, enabling
run_intersect_test to initialize the values of its persistent data. The remaining seven times the
decision executed, it evaluated to false. Because both possible outcomes occurred, decision
coverage is 100%.

Coverage for Line 14

The Decisions analyzed table indicates that the local function rect_intersect executed during
testing, thus receiving 100% coverage.

 Model Coverage for MATLAB Functions

5-51

Coverage for Line 27

The Decisions analyzed table indicates that there are two possible outcomes for the decision in line
27: true and false. Five of the eight times it was executed, the decision evaluated to false. The
remaining three times, it evaluated to true. Because both possible outcomes occurred, decision
coverage is 100%.

The Conditions analyzed table sheds some additional light on the decision in line 27. Because this
decision consists of two conditions linked by a logical OR (||) operation, only one condition must
evaluate true for the decision to be true. If the first condition evaluates to true, there is no need to
evaluate the second condition. The first condition, top1 < bottom2, was evaluated eight times, and
was true twice. This means that the second condition was evaluated only six times. In only one case
was it true, which brings the total true occurrences for the decision to three, as reported in the
Decisions analyzed table.

MCDC coverage looks for decision reversals that occur because one condition outcome changes from
T to F or from F to T. The MCDC analysis table identifies all possible combinations of outcomes for
the conditions that lead to a reversal in the decision. The character x is used to indicate a condition
outcome that is irrelevant to the decision reversal. Decision-reversing condition outcomes that are
not achieved during simulation are marked with a set of parentheses. There are no parentheses,
therefore all decision-reversing outcomes occurred and MCDC coverage is complete for the decision
in line 27.

Coverage for Line 30

The line 30 decision, if (right1 < left2 || right2 < left1), is nested in the if statement
of the line 27 decision and is evaluated only if the line 27 decision is false. Because the line 27

5 Coverage Collection During Simulation

5-52

decision evaluated false five times, line 30 is evaluated five times, three of which are false.
Because both the true and false outcomes are achieved, decision coverage for line 30 is 100%.

Because line 30, like line 27, has two conditions related by a logical OR operator (||), condition 2 is
tested only if condition 1 is false. Because condition 1 tests false five times, condition 2 is tested
five times. Of these, condition 2 tests true two times and false three times, which accounts for the
two occurrences of the true outcome for this decision.

Because the first condition of the line 30 decision does not test true, both outcomes do not occur for
that condition and the condition coverage for the first condition is highlighted with a rose color.
MCDC coverage is also highlighted in the same way for a decision reversal based on the true
outcome for that condition.

Coverage for run_intersect_test

On the Details tab, the metrics that summarize coverage for the entire run_intersect_test
function are reported and repeated as shown.

 Model Coverage for MATLAB Functions

5-53

The results summarized in the coverage metrics summary can be expressed in the following
conclusions:

• There are eight decision outcomes reported for run_intersect_test in the line reports:

• One for line 1 (executed)
• Two for line 6 (true and false)
• One for line 14 (executed)
• Two for line 27 (true and false)
• Two for line 30 (true and false).

The decision coverage for each line shows 100% decision coverage. This means that decision
coverage for run_intersect_test is eight of eight possible outcomes, or 100%.

• There are four conditions reported for run_intersect_test in the line reports. Lines 27 and 30
each have two conditions, and each condition has two condition outcomes (true and false), for a
total of eight condition outcomes in run_intersect_test. All conditions tested positive for both
the true and false outcomes except the first condition of line 30 (right1 < left2). This
means that condition coverage for run_intersect_test is seven of eight, or 88%.

• The MCDC coverage tables for decision lines 27 and 30 each list two cases of decision reversal for
each condition, for a total of four possible reversals. Only the decision reversal for a change in the
evaluation of the condition right1 < left2 of line 30 from true to false did not occur during
simulation. This means that three of four, or 75% of the possible reversal cases were tested for
during simulation, for a coverage of 75%.

Model Coverage for MATLAB Functions in an External File

Using the same model in “Model Coverage for MATLAB Function Blocks” on page 5-47, suppose the
MATLAB functions run_intersect_test and rect_intersect are stored in an external MATLAB
file named run_intersect_test.m.

To collect coverage for MATLAB functions in an external file, on the Coverage pane of the
Configuration Parameters dialog box, select Coverage for MATLAB files.

After simulation, the model coverage report summary contains sections for the top-level model and
for the external function.

5 Coverage Collection During Simulation

5-54

The model coverage report for run_intersect_test.m reports the same coverage data as if the
functions were stored in the MATLAB Function block.

For a detailed example of a model coverage report for a MATLAB function in an external file, see
“External MATLAB File Coverage Report” on page 6-3.

Model Coverage for Simulink Design Verifier MATLAB Functions

If the MATLAB code includes any of the following Simulink Design Verifier functions configured for
code generation, you can measure coverage:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

For this example, consider the following model that contains a MATLAB Function block.

The MATLAB Function block contains the following code:

function y = fcn(u)
% This block supports MATLAB for code generation.

sldv.condition(u > -30)
sldv.test(u == 30)
y = 1;

To collect coverage for Simulink Design Verifier MATLAB functions, on the Coverage pane in the
Configuration Parameters dialog box, under Other metrics, select Objectives and Constraints.

After simulation, the model coverage report listed coverage for the sldv.condition and
sldv.test functions. For sldv.condition, the expression u > -30 evaluated to true 51 times.
For sldv.test, the expression u == 30 evaluated to true 51 times.

 Model Coverage for MATLAB Functions

5-55

For an example of model coverage data for Simulink Design Verifier blocks, see “Objectives and
Constraints Coverage” on page 1-6.

5 Coverage Collection During Simulation

5-56

Coverage for MATLAB® Function Blocks
This example model explains how Model Coverage relates to MATLAB code inside a MATLAB
Function Block.

 Coverage for MATLAB® Function Blocks

5-57

5 Coverage Collection During Simulation

5-58

Coverage for Custom C/C++ Code in Simulink Models
When you record coverage for models containing supported C/C++ S-Functions, MATLAB Function
blocks that call external C/C++ code, C Caller blocks with C/C++ code , or Stateflow charts that
integrate custom C/C++ code for simulation, coverage is recorded for the C/C++ code within the C/C
++ S-Functions, MATLAB Function blocks, or Stateflow charts. The coverage results for the custom
code can be viewed in the same report as the rest of the model. For each S-Function block, MATLAB
Function block, or Stateflow chart, the report links to a detailed coverage report for the C/C++ code
in the block.

Enable Code Coverage for Custom C/C++ code in MATLAB Function
Blocks, C Caller Blocks, and Stateflow Charts
To enable code coverage for custom C/C++ code in your Simulink model:

1 On the Simulation Target pane of the Configuration Parameters, select Import custom code.
2 On the Simulation Target pane of the Configuration Parameters, select Enable custom code

analysis.

Simulink Coverage records code coverage for custom C/C++ code in MATLAB Function blocks, C
Caller blocks, and Stateflow charts.

Code Coverage for S-Functions
Make S-Function Compatible with Model Coverage

If you use the legacy_code function, S-Function Builder block or mex function to create your S-
Functions, adapt your method appropriately to make the S-Function compatible with model coverage.

For more information on the three approaches, see “Implement C/C++ S-Functions”.

• “S-Function Using legacy_code Function” on page 5-59
• “S-Function Using S-Function Builder” on page 5-59
• “S-Function Using mex Function” on page 5-60

S-Function Using legacy_code Function

1 Initialize a MATLAB structure with fields that represent Legacy Code Tool properties.

def = legacy_code('initialize')
2 To enable model coverage, turn on the option def.Options.supportCoverage.

def.Options.supportCoverageAndDesignVerifier = true;
3 Use the structure def in the usual way to generate an S-function. For an example, see “Coverage

for S-Functions” on page 5-65.

S-Function Using S-Function Builder

1 Copy an instance of the S-Function Builder block from the User-Defined Functions library in
the Library Browser into the your model.

2 Double-click the block to open the S-Function Builder dialog box.

 Coverage for Custom C/C++ Code in Simulink Models

5-59

3 On the Build Info tab, select Enable support for coverage.

S-Function Using mex Function

If you use the mex function to compile and link your source files, use the slcovmex function instead.
The slcovmex function compiles your source code and also makes it compatible with coverage.

This function has the same syntax and takes the same options as the mex function. In addition, you
can provide some options relevant for model coverage. For more information, see slcovmex.

Generate Coverage Report for S-Function

1 In the Simulink Editor, select Model Settings on the Modeling tab.
2 On the Coverage pane of the Configuration Parameters dialog box, select C/C++ S-functions.

When you run a simulation, the coverage report contains coverage metrics for C/C++ S-Function
blocks in your model. For each S-Function block, the report links to a detailed coverage report for the
C/C++ code in the block.

See Also

Related Examples
• “View Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-61

More About
• “C/C++ S-Function” on page 2-19

5 Coverage Collection During Simulation

5-60

View Coverage Results for Custom C/C++ Code in S-Function
Blocks

This example shows how to view coverage results for the C/C++ code in S-Function blocks in your
model. To view coverage results for the C/C++ code in the blocks:

• Enable support for S-Function coverage. For more information, see “Coverage for Custom C/C++
Code in Simulink Models” on page 5-59.

• Run simulation and view the coverage report.

The coverage results for S-Function blocks can be viewed in the same report as the rest of the
model. For each S-Function block, the report links to a detailed coverage report for the C/C++
code in the block.

To view the full code coverage report used in this example, follow the steps in “Coverage for S-
Functions” on page 5-65.

1 In the coverage report, view the coverage metrics for the S-Function block.

For more information on the coverage report format, see “Top-Level Model Coverage Report” on
page 6-10.

2 Select the Detailed Report link. The code coverage report for the S-Function block opens.
3 Select each of the links in Table Of Contents to navigate to various sections of the report.

 View Coverage Results for Custom C/C++ Code in S-Function Blocks

5-61

Section Title Purpose
Analysis information Contains information such as time when model was created

and last modified, and file size.
Tests Contains information about the simulation such as start and

end time.
Summary Contains coverage information about the files and functions

in the S-Function block. For each file and function, the
percentage coverage is displayed. The coverage types
relevant for the code are the following:
Coverage Type Label
“Cyclomatic Complexity for
Code Coverage” on page 4-4

Complexity

“Condition Coverage for
Code Coverage” on page 4-2

Condition.

“Decision Coverage for Code
Coverage” on page 4-3

Decision

“Modified Condition/Decision
Coverage (MCDC) for Code
Coverage” on page 4-3

MCDC

“Relational Boundary for
Code Coverage” on page 4-4

Relational Boundary

Percentage of statements
covered

Stmt

Details Contains coverage information about the statements that
receive condition, decision or MCDC coverage. The
information is grouped by file and function.

Code Contains the C/C++ code. Statements that are not covered
are highlighted in pink.

4 In the Summary section, select each file or function name to see details of coverage for
statements in the file or function.

5 Coverage Collection During Simulation

5-62

5 The condition, decision or MCDC outcomes that were not tested during simulation are
highlighted in pink. Within the details for a file or function, scroll down to note these cases and
investigate them further.

6 To obtain an overview of the statements that were not covered, navigate to the Code section.
This section contains your code with the uncovered statements highlighted in pink.

 View Coverage Results for Custom C/C++ Code in S-Function Blocks

5-63

See Also

More About
• “C/C++ S-Function” on page 2-19

5 Coverage Collection During Simulation

5-64

Coverage for S-Functions
This example shows how to configure an S-Function generated with the Legacy Code Tool to be
compatible with coverage. The model coverage tool supports S-Functions that are:

• Generated with the Legacy Code Tool, with def.Options.supportCoverage set to true,
• Generated with the SFunctionBuilder, with Enable support for coverage selected on the Build

Info tab of the SFunctionBuilder dialog box, or
• Compiled with the slcovmex function.

Open Example Model

The example model sldemo_lct_bus contains an S-Function generated with the Legacy Code Tool. The
S-Function has constructs that receive decision, condition, and MCDC coverage.

Open sldemo_lct_bus

Configure S-Function to Be Compatible with Model Coverage

The legacy source code in the files counterbus.h, and counterbus.c implements the same algorithm as
in sldemo_lct_bus/slCounter. The Legacy Code Tool data structure is defined as follows:

load_system('sldemo_lct_bus');
open_system('sldemo_lct_bus/TestCounter');

def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_counterbus';
def.OutputFcnSpec = 'void counterbusFcn(COUNTERBUS u1[1], int32 u2, COUNTERBUS y1[1], int32 y2[1])';
def.HeaderFiles = {'counterbus.h'};
def.SourceFiles = {'counterbus.c'};

To make this S-Function compatible with model coverage, enable the following option:

def.Options.supportCoverage = true;

Generate and compile the S-Function using the legacy_code function:

legacy_code('generate_for_sim', def);

Start Compiling sldemo_sfun_counterbus
mex -IC:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpa9d68794\ex71096464 -c C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpb8d735b1_f2d2_48a5_bdba_145c1cfaa127\counterbus.c -outdir C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tp06dd46f7_007a_49d3_8fb1_40482cb753d1
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpa9d68794\ex71096464 C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpb8d735b1_f2d2_48a5_bdba_145c1cfaa127\tpf8ba2e12_03cc_425a_8102_fad8ed0c3097.c C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tp06dd46f7_007a_49d3_8fb1_40482cb753d1\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output sldemo_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.

 Coverage for S-Functions

5-65

matlab:sldemo_lct_bus

MEX completed successfully.
mex -IC:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpa9d68794\ex71096464 -c C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpa9d68794\ex71096464\counterbus.c -outdir C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tp06dd46f7_007a_49d3_8fb1_40482cb753d1
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpa9d68794\ex71096464 C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpb8d735b1_f2d2_48a5_bdba_145c1cfaa127\sldemo_sfun_counterbus.c C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpb8d735b1_f2d2_48a5_bdba_145c1cfaa127\tp6a431535_8d24_4c85_9fb1_7cd96ce83a9d.c C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpb8d735b1_f2d2_48a5_bdba_145c1cfaa127\tpf02758d2_38d6_46eb_ad50_578330639d39.c C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tp06dd46f7_007a_49d3_8fb1_40482cb753d1\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output sldemo_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling sldemo_sfun_counterbus
Exit

Enable S-Function Coverage

To enable coverage collection for S-Functions, select C/C++ S-Functions in the Coverage pane of
the Configurations Parameters dialog box. Alternatively, set the option through the command line:

set_param('sldemo_lct_bus',...
 'CovMetricStructuralLevel', 'MCDC',...
 'RecordCoverage', 'on',...
 'CovSFcnEnable', 'on'...
);

Run Simulation and Produce Coverage Report

Once you enable coverage data collection, coverage information is automatically recorded when you
simulate the model. At the end of the simulation, you can generate an HTML report of coverage
information, which is displayed in the built-in MATLAB® web browser.

sim('sldemo_lct_bus', 'StopTime', '20');
cvhtml('coverageResults', covdata);

Extract Information from Coverage Data Objects

The cvdata object can be used to extract coverage information for S-Functions, just like any other
supported model element. For instance, the decisioninfo command extracts coverage information
from a block path or a block handle. The output is a vector containing the satisfied and total
outcomes for a single model object.

cov = decisioninfo(covdata, 'sldemo_lct_bus/TestCounter/sldemo_sfun_counterbus')

cov =

 3 4

You then use this coverage information to calculate the percentage of covered model objects:

percentCov = 100 * (cov(1)/cov(2))

percentCov =

 75

S-Function coverage is fully compatible with the model coverage commands, such as decisioninfo,
conditioninfo, and mcdcinfo.

5 Coverage Collection During Simulation

5-66

Model Coverage for Stateflow Charts

How Model Coverage Reports Work for Stateflow Charts
A model coverage report is generated automatically if you simulate your model using the Run button.
If you did not use the Run button, or you loaded coverage data without simulating the model,
generate a Model Coverage report using cvhtml. For Stateflow charts, Simulink Coverage records
the execution of the chart itself and the execution of states, transition decisions, and individual
conditions that compose each decision. After simulation ends, the model coverage reports on how
thoroughly a model was tested. The report shows:

• How many times each exclusive sub-state is executed or exited from its parent superstate and
entered due to parent superstate history

• How many times each transition decision has been evaluated as true or false
• How many times each condition has been evaluated as true or false

Note To measure model coverage data for a Stateflow chart, you must:

• Have a Stateflow license.
• Have debugging/animation enabled for the chart.

Specify Coverage Report Settings for Stateflow Charts
Specify coverage recording settings from the Coverage pane of the Configuration Parameters dialog
box.

Enabling coverage analysis also enables the selection of different coverage metrics. The following
sections address only coverage metrics that affect reports for Stateflow charts. These metrics include
decision coverage, condition coverage, and MCDC coverage.

Cyclomatic Complexity for Stateflow Charts
Cyclomatic complexity is a measure of the complexity of a software module based on its edges, nodes,
and components within a control-flow chart. It provides an indication of how many times you need to
test the module.

The calculation of cyclomatic complexity is as follows:

CC = E - N + p

where CC is the cyclomatic complexity, E is the number of edges, N is the number of nodes, and p is
the number of components.

Within the Model Coverage tool, each decision is exactly equivalent to a single control flow node, and
each decision outcome is equivalent to a control flow edge. Any additional structure in the control-
flow chart is ignored since it contributes the same number of nodes as edges and therefore has no
effect on the complexity calculation. Therefore, you can express cyclomatic complexity as follows:

CC = OUTCOMES - DECISIONS + p

 Model Coverage for Stateflow Charts

5-67

For analysis purposes, each chart counts as a single component.

Decision Coverage for Stateflow Charts
Decision coverage interprets a model execution in terms of underlying decisions where behavior or
execution must take one outcome from a set of mutually exclusive outcomes.

Note Full coverage for an object of decision means that every decision has had at least one
occurrence of each of its possible outcomes.

Decisions belong to an object making the decision based on its contents or properties. The following
table lists the decisions recorded for model coverage for the Stateflow objects owning them. The
sections that follow the table describe these decisions and their possible outcomes.

Object Possible Decisions
Chart If a chart is a triggered Simulink block, it must decide whether or not to execute

its block.

If a chart contains exclusive (OR) substates, it must decide which of its states to
execute.

State If a state is a superstate containing exclusive (OR) substates, it must decide which
substate to execute.

If a state has on event name actions (which might include temporal logic
operators), the state must decide whether or not to execute the actions.

Transition If a transition is a conditional transition, it must decide whether or not to exit its
active source state or junction and enter another state or junction.

Chart as a Triggered Simulink Block Decision

If the chart is a triggered block in a Simulink model, the decision to execute the block is tested. If the
block is not triggered, there is no decision to execute the block, and the measurement of decision
coverage is not applicable (NA).

Chart Containing Exclusive OR Substates Decision

If the chart contains exclusive (OR) substates, the decision on which substate to execute is tested. If
the chart contains only parallel AND substates, this coverage measurement is not applicable (NA).

Superstate Containing Exclusive OR Substates Decision

Since a chart is hierarchically processed from the top down, procedures such as exclusive (OR)
substate entry, exit, and execution are sometimes decided by the parenting superstate.

Note Decision coverage for superstates applies only to exclusive (OR) substates. A superstate makes
no decisions for parallel (AND) substates.

Since a superstate must decide which exclusive (OR) substate to process, the number of decision
outcomes for the superstate is the number of exclusive (OR) substates that it contains. In the

5 Coverage Collection During Simulation

5-68

examples that follow, the choice of which substate to process can occur in one of three possible
contexts.

Note Implicit transitions appear as dashed lines in the following examples.

Context Example Decisions That Occur
Active call States A and A1 are active. • The parent of states A and B must

decide which of these states to
process. This decision belongs to the
parent. Since A is active, it is
processed.

• State A, the parent of states A1 and
A2, must decide which of these
states to process. This decision
belongs to state A. Since A1 is active,
it is processed.

During processing of state A1, all
outgoing transitions are tested. This
decision belongs to the transition and
not to the parent state A. In this case,
the transition marked by condition C2 is
tested and a decision is made whether
to take the transition to A2 or not.

Implicit substate
exit

A transition takes place whose source is
superstate A and whose destination is state B.

If the superstate has two exclusive (OR)
substates, it is the decision of
superstate A which substate performs
the implicit transition from substate to
superstate.

Substate entry
with a history
junction

A history junction records which substate was
last active before the superstate was exited.

If that superstate becomes the
destination of one or more transitions,
the history junction decides which
previously active substate to enter.

 Model Coverage for Stateflow Charts

5-69

For more information, see “State Details Report Section” on page 5-75.

State with On Event_Name Action Statement Decision

A state that has an on event_name action statement must decide whether to execute that statement
based on the reception of a specified event or on an accumulation of the specified event when using
temporal logic operators.

Conditional Transition Decision

A conditional transition is a transition with a triggering event and/or a guarding condition. In a
conditional transition from one state to another, the decision to exit one state and enter another is
credited to the transition itself.

Note Only conditional transitions receive decision coverage. Transitions without decisions are not
applicable to decision coverage.

Condition Coverage for Stateflow Charts
Condition coverage reports on the extent to which all possible outcomes are achieved for individual
subconditions composing a transition decision or for logical expressions in assignment statements in
states and transitions.

For example, for the decision [A & B & C] on a transition, condition coverage reports on the true and
false occurrences of each of the subconditions A, B, and C. This results in eight possible outcomes:
true and false for each of three subconditions.

Outcome A B C
1 T T T
2 T T F
3 T F T
4 T F F
5 F T T
6 F T F
7 F F T
8 F F F

For more information, see “Transition Details Report Section” on page 5-77.

MCDC Coverage for Stateflow Charts
The Modified Condition Decision/Coverage (MCDC) option reports a test's coverage of occurrences in
which changing an individual subcondition within a logical expression results in changing the entire
expression from true to false or false to true.

For example, if a transition executes on the condition [C1 & C2 & C3 | C4 & C5], the MCDC
report for that transition shows actual occurrences for each of the five subconditions (C1, C2, C3,
C4, C5) in which changing its result from true to false is able to change the result of the entire
condition from true to false.

5 Coverage Collection During Simulation

5-70

Relational Boundary Coverage for Stateflow Charts
If a transition in a Stateflow chart involves a relational operation, it receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-7.

Simulink Design Verifier Coverage for Stateflow Charts
You can use the following Simulink Design Verifier functions inside Stateflow charts:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

If you do not have a Simulink Design Verifier license, you can collect model coverage for a Stateflow
chart containing these functions, but you cannot analyze the model using the Simulink Design Verifier
software.

When you specify the Objectives and Constraints coverage metric in the Coverage pane of the
Configuration Parameters dialog box, the Simulink Coverage software records coverage for these
functions.

Each of these functions evaluates an expression expr, for example, sldv.test(expr), where expr
is any valid Boolean MATLAB expression. Simulink Design Verifier coverage measures the number of
time steps that the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for that function is
100%. Otherwise, the Simulink Coverage software reports coverage for that function as 0%.

Consider a model that contains this Stateflow chart:

To collect coverage for Simulink Design Verifier functions, on the Coverage pane in the Configuration
Parameters dialog box, select Objectives and Constraints.

After simulation, the model coverage report lists coverage for the sldv.condition, sldv.assume,
sldv.prove, and sldv.test functions.

 Model Coverage for Stateflow Charts

5-71

Model Coverage Reports for Stateflow Charts
• “Summary Report Section” on page 5-72
• “Subsystem and Chart Details Report Sections” on page 5-73
• “State Details Report Section” on page 5-75
• “Transition Details Report Section” on page 5-77

The following sections of a Model Coverage report were generated by simulating the sf_boiler
model, which includes the Bang-Bang Controller chart. The coverage metrics for MCDC are enabled
for this report.

Summary Report Section

The Summary section shows coverage results for the entire test and appears at the beginning of the
Model Coverage report.

5 Coverage Collection During Simulation

5-72

Each line in the hierarchy summarizes the coverage results at that level and the levels below it. You
can click a hyperlink to a later section in the report with the same assigned hierarchical order
number that details that coverage and the coverage of its children.

The top level, sf_boiler, is the Simulink model itself. The second level, Bang-Bang Controller, is the
Stateflow chart. The next levels are superstates within the chart, in order of hierarchical
containment. Each superstate uses an SF: prefix. The bottom level, Boiler Plant model, is an
additional subsystem in the model.

Subsystem and Chart Details Report Sections

When recording coverage for a Stateflow chart, the Simulink Coverage software reports two types of
coverage for the chart—Subsystem and Chart.

• Subsystem — This section reports coverage for the chart:

• Coverage (this object): Coverage data for the chart as a container object
• Coverage (inc.) descendants: Coverage data for the chart and the states and transitions in the

chart.

If you click the hyperlink of the subsystem name in the section title, the Bang-Bang Controller
block is highlighted in the block diagram.

Decision coverage is not applicable (NA) because this chart does not have an explicit trigger.
Condition coverage and MCDC are not applicable (NA) for a chart, but apply to its descendants.

 Model Coverage for Stateflow Charts

5-73

• Chart — This section reports coverage for the chart:

• Coverage (this object): Coverage data for the chart and its inputs
• Coverage (inc.) descendants: Coverage data for the chart and the states and transitions in the

chart.

If you click the hyperlink of the chart name in the section title, the chart opens in the Stateflow
Editor.

Decision coverage is listed appears for the chart and its descendants. Condition coverage and
MCDC are not applicable (NA) for a chart, but apply to its descendants.

5 Coverage Collection During Simulation

5-74

State Details Report Section

For each state in a chart, the coverage report includes a State section with details about the coverage
recorded for that state.

In the sf_boiler model, the state On resides in the box Heater. On is a superstate that contains:

• Two substates HIGH and NORM
• A history junction
• The function warm

The coverage report includes a State section on the state On.

 Model Coverage for Stateflow Charts

5-75

The decision coverage for the On state tests the decision of which substate to execute.

The three decisions are listed in the report:

• Under Substate executed, which substate to execute when On executes.
• Under Substate exited when parent exited, which substate is active when On exits. NORM is listed

as never being active when On exits because the coverage tool sees the supertransition from NORM
to Off as a transition from On to Off.

• Under Previously active substate entered due to history, which substate to reenter when On re-
executes. The history junction records the previously active substate.

Because each decision can result in either HIGH or NORM, the total possible outcomes are 3 × 2 = 6.
The results indicate that five of six possible outcomes were tested during simulation.

Cyclomatic complexity and decision coverage also apply to descendants of the On state. The decision
required by the condition [warm()] for the transition from HIGH to NORM brings the total possible
decision outcomes to 8. Condition coverage and MCDC are not applicable (NA) for a state.

5 Coverage Collection During Simulation

5-76

Note Nodes and edges that make up the cyclomatic complexity calculation have no direct
relationship with model objects (states, transitions, and so on). Instead, this calculation requires a
graph representation of the equivalent control flow.

Transition Details Report Section

Reports for transitions appear under the report sections of their owning objects. Transitions do not
appear in the model hierarchy of the Summary section, since the hierarchy is based on superstates
that own other Stateflow objects.

The decision for this transition depends on the time delay of 40 seconds and the condition [cold()].
If, after a 40 second delay, the environment is cold (cold() = 1), the decision to execute this
transition and turn the Heater on is made. For other time intervals or environment conditions, the
decision is made not to execute.

 Model Coverage for Stateflow Charts

5-77

For decision coverage, both true and false outcomes occurred. Because two of two decision outcomes
occurred, coverage was full or 100%.

Condition coverage shows that only 4 of 6 condition outcomes were tested. The temporal logic
statement after(40,sec) represents two conditions: the occurrence of sec and the time delay
after(40,sec). Therefore, three conditions on the transition exist: sec, after(40,sec), and
cold(). Since each of these decisions can be true or false, six possible condition outcomes exist.

The Conditions analyzed table shows each condition as a row with the recorded number of
occurrences for each outcome (true or false). Decision rows in which a possible outcome did not
occur are shaded. For example, the first and the third rows did not record an occurrence of a false
outcome.

In the MCDC report, all sets of occurrences of the transition conditions are scanned for a particular
pair of decisions for each condition in which the following are true:

• The condition varies from true to false.
• All other conditions contributing to the decision outcome remain constant.
• The outcome of the decision varies from true to false, or the reverse.

For three conditions related by an implied AND operator, these criteria can be satisfied by the
occurrence of these conditions.

Condition Tested True Outcome False Outcome
1 TTT Fxx
2 TTT TFx
3 TTT TTF

Notice that in each line, the condition tested changes from true to false while the other condition
remains constant. Irrelevant contributors are coded with an "x" (discussed below). If both outcomes
occur during testing, coverage is complete (100%) for the condition tested.

The preceding report example shows coverage only for condition 2. The false outcomes required for
conditions 1 and 3 did not occur, and are indicated by parentheses for both conditions. Therefore,
condition rows 1 and 3 are shaded. While condition 2 has been tested, conditions 1 and 3 have not
and MCDC is 33%.

For some decisions, the values of some conditions are irrelevant under certain circumstances. For
example, in the decision [C1 & C2 & C3 | C4 & C5] the left side of the | is false if any one of the
conditions C1, C2, or C3 is false. The same applies to the right side result if either C4 or C5 is false.
When searching for matching pairs that change the outcome of the decision by changing one
condition, holding some of the remaining conditions constant is irrelevant. In these cases, the MCDC
report marks these conditions with an "x" to indicate their irrelevance as a contributor to the result.
These conditions appear as shown.

5 Coverage Collection During Simulation

5-78

Consider the first matched pair. Since condition 1 is true in the True outcome column, it must be
false in the matching False outcome column. This makes the conditions C2 and C3 irrelevant for the
false outcome since C1 & C2 & C3 is always false if C1 is false. Also, since the false outcome is
required to evaluate to false, the evaluation of C4 & C5 must also be false. In this case, a match was
found with C4 = F, making condition C5 irrelevant.

Model Coverage for Stateflow State Transition Tables
State transition tables are an alternative way of expressing modal logic in Stateflow. Stateflow charts
represent modal logic graphically, and state transition tables can represent equivalent modal logic in
tabular form. For more information, see “State Transition Tables” (Stateflow).

Coverage results for state transition tables are the same as coverage results for equivalent Stateflow
charts, except for a slight difference that arises in coverage of temporal logic. For example, consider
the temporal logic expression after(4, tick) in the Mode Logic chart of the
slvnvdemo_covfilt example model.

In chart coverage, the after(4, tick) transition represents two conditions: the occurrence of
tick and the time delay after(4, tick). Since the temporal event tick is never false, the first
condition is not satisfiable, and you cannot record 100% condition and MCDC coverage for the
transition after(4, tick).

In state transition table coverage, the after(4, tick) transition represents a single decision, with
no subcondition for the occurrence of tick. Therefore, only decision coverage is recorded.

For state transition tables containing temporal logic decisions, as in the above example, condition
coverage and MCDC is not recorded.

 Model Coverage for Stateflow Charts

5-79

Model Coverage for Stateflow Atomic Subcharts
In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the same state
or subchart across multiple charts and models.

When you specify to record coverage data for a model during simulation, the Simulink Coverage
software records coverage for any atomic subcharts in your model. The coverage data records the
execution of the chart itself, and the execution of states, transition decisions, and individual
conditions that compose each decision in the atomic subchart.

Simulate the doc_atomic_subcharts_map_iodata example model and record decision coverage:

1 Open the doc_atomic_subcharts_map_iodata model.

This model contains two Sine Wave blocks that supply input signals to the Stateflow chart. Chart
contains two atomic subcharts—A and B—that are linked from the same library chart, also named
A. The library chart contains the following objects:

2 In the Simulink Editor, select Model Settings on the Modeling tab. Select the Coverage pane
of the Configuration Parameters dialog box.

3 Select Enable coverage analysis and then select Entire System.
4 Click OK to close the Configuration Parameters dialog box.
5 Simulate the doc_atomic_subcharts_map_iodata model.

When the simulation completes, the coverage report opens.

The report provides coverage data for atomic subcharts A and B in the following forms:

• For the atomic subchart instance and its contents. Decision coverage is not applicable (NA)
because this chart does not have an explicit trigger.

5 Coverage Collection During Simulation

5-80

• For the library chart A and its contents. The chart itself achieves 100% coverage on the input u1,
and 88% coverage on the states and transitions inside the library chart.

Atomic subchart B is a copy of the same library chart A. The coverage of the contents of subchart
B is identical to the coverage of the contents of subchart A.

Model Coverage for Stateflow Truth Tables
• “Types of Coverage in Stateflow Truth Tables” on page 5-81
• “Analyze Coverage in Stateflow Truth Tables” on page 5-82

Types of Coverage in Stateflow Truth Tables

Simulink Coverage software reports model coverage for the decisions the objects make in a Stateflow
chart during model simulation. The report includes coverage for the decisions the truth table
functions make.

 Model Coverage for Stateflow Charts

5-81

For this type of truth
table...

The report includes coverage data for...

Stateflow Classic Conditions only.
MATLAB Conditions and only those actions that have decision points.

Note With the MATLAB for code generation action language, you can
specify decision points in actions using control flow constructs, such as
loops and switch statements.

Note To measure model coverage data for a Stateflow truth table, you must have a Stateflow license.
For more information about Stateflow truth tables, see “Obtain Cumulative Coverage for Reusable
Subsystems and Stateflow® Constructs” on page 5-34.

Analyze Coverage in Stateflow Truth Tables

If you have a Stateflow license, you can generate a model coverage report for a truth table.

Consider the following model.

The Stateflow chart contains the following truth table:

5 Coverage Collection During Simulation

5-82

When you simulate the model and collect coverage, the model coverage report includes the following
data:

 Model Coverage for Stateflow Charts

5-83

The Coverage (this object) column shows no coverage. The reason is that the container object for
the truth table function—the Stateflow chart—does not decide whether to execute the ttable truth
table.

The Coverage (inc. descendants) column shows coverage for the graphical function. The graphical
function has the decision logic that makes the transitions for the truth table. The transitions in the
graphical function contain the decisions and conditions of the truth table. Coverage for the
descendants in the Coverage (inc. descendants) column includes coverage for these conditions and
decisions. Function calls to the truth table test the model coverage of these conditions and decisions.

Note See “View Generated Content for Stateflow Truth Tables” (Stateflow) for a description of the
graphical function for a truth table.

Coverage for the decisions and their individual conditions in the ttable truth table function are as
follows.

5 Coverage Collection During Simulation

5-84

Coverage Explanation
No model coverage for the default decision,
D4

All logic that leads to taking a default decision is
based on a false outcome for all preceding decisions.
This means that the default decision requires no
logic, so there is no model coverage.

17% (1/6) decision coverage The three constants that are inputs to the truth table
(1, 0, 0) cause only decision D1 to be true. These
inputs satisfy only one of the six decisions (D1
through D3, T or F).

Because each condition can have an outcome value
of T or F, three conditions can have six possible
values.

3 of the 18 (17%) condition coverage Three decisions D1, D2, and D3 have condition
coverage, because the set of inputs (1, 0, 0) make
only decision D1 true.

No (0/9) MCDC coverage MCDC coverage looks for decision reversals that
occur because one condition outcome changes from
T to F or F to T. The simulation tests only one set of
inputs, so the model reverses no decisions.

Missing coverage The red letters T and F indicate that model coverage
is missing for those conditions. For decision D1, only
the T decision is satisfied. For decisions D2, D3, and
D4, none of the conditions are satisfied.

Model Coverage Display for Stateflow Charts
Simulink Coverage displays model coverage results for individual blocks directly in Stateflow charts.
When you simulate your model with coverage enabled, the model displays:

• Highlighting for Stateflow elements that receive model coverage during simulation
• A context-sensitive display of summary model coverage information for each object

For details on enabling coverage highlighting, see “Enable Coverage Highlighting” on page 5-22.

Display Model Coverage with Model Coloring

When you enable coverage and simulate the model with the Run button, the model highlights
individual Stateflow elements receiving coverage. If you run your model using sim the model does
not display coverage results by default. In this case, you can see the model highlighting by using
cvmodelview.

1 Open the sf_car model from “Simulate Chart as a Simulink Block With Local Events”
(Stateflow).

2 In the Modeling tab, click Model Settings.
3 In the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 In the Coverage metrics section, set Structural coverage level to Modified Condition

Decision Coverage (MCDC).

 Model Coverage for Stateflow Charts

5-85

5 Click OK.
6 Simulate the model by clicking the Run (Coverage) button.
7 Open the shift_logic Stateflow chart.

After simulation ends, the model highlights the chart objects that were analyzed for coverage.

The colors indicate the completeness of coverage analysis:

• Green border for full coverage
• Red border for partial or missing coverage
• Light grey for elements not analyzed for coverage

States that include executable code and conditional transitions that use MATLAB as the action
language display granular text coloring based on which outcomes are satisfied. Green indicates
satisfied outcomes and red indicates unsatisfied outcomes. For example, consider the following chart:

5 Coverage Collection During Simulation

5-86

In this example, the if statement has evaluated to both true and false and therefore has full decision
coverage. Within the statement, condition a > 0 evaluated to both true and false and has full
condition coverage. Condition b > 0, however, evaluated to true but not false and therefore has only
partial condition coverage.

Code Coverage for C/C++ code in Stateflow Charts
Simulink Coverage can record code coverage if your Stateflow chart contains custom C/C++ code.
For more information, see “Coverage for Custom C/C++ Code in Simulink Models” on page 5-59.

Obtain Cumulative Coverage for Reusable Subsystems and Stateflow® Constructs

This example shows how to create and view cumulative coverage results for a model with a reusable
subsystem.

Simulink® Coverage™ provides cumulative coverage for multiple instances of identically configured:

• Reusable subsystems
• Stateflow™ constructs

To obtain cumulative coverage, you add the individual coverage results at the command line. You can
get cumulative coverage results for multiple instances across models and test harnesses by adding
the individual coverage results.

Open example model

At the MATLAB® command line, type:

model = 'slvnvdemo_cv_mutual_exclusion';
open_system(model);

 Model Coverage for Stateflow Charts

5-87

This model has two instances of a reusable subsystem. The instances are named Subsystem 1 and
Subsystem 2.

Get decision coverage for Subsystem 1

Execute the commands for Subsystem 1 decision coverage:

testobj1 = cvtest([model '/Subsystem 1']);
testobj1.settings.decision = 1;
covobj1 = cvsim(testobj1);

Get decision coverage for Subsystem 2

Execute the commands for Subsystem 2 decision coverage:

testobj2 = cvtest([model '/Subsystem 2']);
testobj2.settings.decision = 1;
covobj2 = cvsim(testobj2);

Add coverage results for Subsystem 1 and Subsystem 2

Execute the command to create cumulative decision coverage for Subsystem 1 and Subsystem 2:

covobj3 = covobj1 + covobj2;

Generate coverage report for Subsystem 1

Create an HTML report for Subsystem 1 decision coverage:

cvhtml('subsystem1',covobj1)

The report indicates that decision coverage is 50% for Subsystem 1. The true condition for enable
logical value is not analyzed.

Generate coverage report for Subsystem 2

Create an HTML report for Subsystem 2 decision coverage:

cvhtml('subsystem2',covobj2)

The report indicates that decision coverage is 50% for Subsystem 2. The false condition for enable
logical value is not analyzed.

Generate coverage report for cumulative coverage of Subsystem 1 and Subsystem 2

Create an HTML report for cumulative decision coverage for Subsystem 1 and Subsystem 2:

cvhtml('cum_subsystem',covobj3)

Cumulative decision coverage for reusable subsystems Subsystem 1 and Subsystem 2 is 100%. Both
the true and false conditions for enable logical value are analyzed.

5 Coverage Collection During Simulation

5-88

Results Review

• “Types of Coverage Reports” on page 6-2
• “Top-Level Model Coverage Report” on page 6-10
• “Export Model Coverage Web View” on page 6-39

6

Types of Coverage Reports
If you simulate your model with coverage enabled using the Run button, or you generate a report
from the Results Explorer, Simulink Coverage creates one or more model coverage reports after a
simulation.

Report Type Description HTML Report File Name
“Top-Level Model Coverage Report” on
page 6-10

Provides coverage information
for all model elements, including
the model itself.

model_name_cov.html

“Model Summary Report” on page 6-2 Provides links to coverage results
for referenced models and
external MATLAB files in the
model hierarchy. Created when
the top-level model includes
Model blocks or calls one or more
external files.

model_name
_summary_cov.html

“Model Reference Coverage Report” on
page 6-3

Created for each referenced
model in the model hierarchy;
has the same format as the model
coverage report.

reference_model_name
_cov.html

“External MATLAB File Coverage
Report” on page 6-3

Provides detailed coverage
information about any external
MATLAB file that the model calls.
There is one report for each
external file called from the
model.

MATLAB_file_name
_cov.html

“Subsystem Coverage Report” on page 6-
7

Model coverage report includes
only coverage results for the
subsystem, if you select one.

model_name_cov.html;
model_name is the name of the
top-level model

“Code Coverage Report” on page 6-9 Provides coverage information
for C/C++ code in S-Function
blocks, or for models in SIL
mode.

model_name_block_name
_instance_n_cov.html, or
model_name_cov.html

Model Summary Report
If the top-level model contains Model blocks or calls external files, the software creates a model
summary coverage report named model_name_summary_cov.html. The title of this report is
Coverage by Model.

The summary report lists and provides links to coverage reports for Model block referenced models
and external files called by MATLAB code in the model. For more information, see “External MATLAB
File Coverage Report” on page 6-3.

The following graphic shows an example of a model summary report. It contains links to the model
coverage report (mExternalMfile), a report for the Model block (mExternalMfileRef), and three
external files called from the model (externalmfile,I externalmfile1, andexternalmfile2).

6 Results Review

6-2

Model Reference Coverage Report
If your top-level model references a model in a Model block, the software creates a separate report,
named reference_model_name_cov.html, that includes coverage for the referenced model. This
report has the same format as the “Top-Level Model Coverage Report” on page 6-10. Coverage
results are recorded as if the referenced model was a standalone model; the report gives no
indication that the model is referenced in a Model block.

External MATLAB File Coverage Report
If your top-level model calls any external MATLAB files, select MATLAB files on the Coverage pane
in the Configuration Parameters dialog box. The software creates a report, named
MATLAB_file_name_cov.html, for each distinct file called from the model. When there are several
calls to a given file from the model, the software creates only one report for that file, but it
accumulates coverage from all the calls to the file. The external MATLAB file coverage report does
not include information about what parts of the model call the external file.

The first section of the external MATLAB file coverage report contains summary information about
the external file, similar to the model coverage report.

 Types of Coverage Reports

6-3

The Details section reports coverage for the external file and the function in that file.

6 Results Review

6-4

The Details section also lists the content of the file, highlighting the code lines that have decision
points or function definitions.

 Types of Coverage Reports

6-5

Coverage results for each of the highlighted code lines follow in the report. The following graphic
shows a portion of these coverage results from the preceding code example.

6 Results Review

6-6

Subsystem Coverage Report
In the Coverage pane of the Configuration Parameters dialog box, when you select Enable coverage
analysis, you can click Select Subsystem to request coverage for only the selected subsystem in the
model. The software creates a model coverage report for the top-level model, but includes coverage
results only for the subsystem.

However, if the top-level model calls any external files and you select MATLAB files in the Coverage
pane in the Configuration Parameters dialog box, the results include coverage for all external files
called from:

• The subsystem for which you are recording coverage
• The top-level model that includes the subsystem

If the subsystem parameter Read/Write Permissions is set to NoReadOrWrite, the software does
not record coverage for that subsystem.

For example, in the fuelsys model, you click Select Subsystem, and select coverage for the
feedforward_fuel_rate subsystem.

 Types of Coverage Reports

6-7

The report is similar to the model coverage report, except that it includes only results for the
feedforward_fuel_rate subsystem and its contents.

6 Results Review

6-8

Code Coverage Report
For each S-Function block, the model coverage report links to a detailed code coverage report for the
C/C++ code in the block. For more information on how to navigate the report, see “View Coverage
Results for Custom C/C++ Code in S-Function Blocks” on page 5-61.

If you have Embedded Coder installed, you can also generate code coverage reports from models in
SIL or PIL mode. For more information on how to generate code coverage reports for models in SIL
or PIL mode, see “Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-
the-Loop (PIL) Mode” on page 4-6.

 Types of Coverage Reports

6-9

Top-Level Model Coverage Report
In this section...
“Analysis Information” on page 6-10
“Aggregated Tests” on page 6-11
“Coverage Summary” on page 6-12
“Details” on page 6-13
“Cyclomatic Complexity” on page 6-21
“Decisions Analyzed” on page 6-23
“Conditions Analyzed” on page 6-24
“MCDC Analysis” on page 6-24
“Cumulative Coverage” on page 6-25
“N-Dimensional Lookup Table” on page 6-27
“Block Reduction” on page 6-31
“Relational Boundary” on page 6-32
“Saturate on Integer Overflow Analysis” on page 6-34
“Signal Range Analysis” on page 6-35
“Signal Size Coverage for Variable-Dimension Signals” on page 6-36
“Simulink Design Verifier Coverage” on page 6-37

If you simulate your model using the Run button, Simulink Coverage creates a model coverage report
for the specified model named model_name_cov.html. The model coverage report is also opened
automatically in the Coverage Details pane. The model coverage report contains several sections:

To access the sldemo_fuelsys model, execute the following commands in the MATLAB command
window:

addpath([matlabroot,'\examples\simulink_automotive\main']);
open_system('sldemo_fuelsys');

Analysis Information
The analysis information section contains basic information about the model being analyzed:

• Coverage Data Information
• Model Information
• Harness Information (appears if you record coverage from a Simulink Test harness)
• Simulation Optimization Options
• Coverage Options

6 Results Review

6-10

Aggregated Tests
The aggregated tests section appears if you:

• Record aggregated coverage results for at least two test cases through the Simulink Test Manager
and produce a coverage report for the aggregated results, or

• Produce a coverage report for cumulative coverage results in the Results Explorer.

If you run test cases through the Simulink Test Manager, the aggregated tests section links to the
associated test cases in the Simulink Test Manager.

If you aggregate test case results through the Results Explorer, the aggregated tests section links to
the corresponding cvdata node in the Results Explorer.

For each run in the aggregated tests section, there is a link to the corresponding results in the
Simulink Test Manager or the Results Explorer.

 Top-Level Model Coverage Report

6-11

Aggregated Unit Tests

If you record coverage for one or more subsystem harnesses, the Aggregated Tests section lists each
unit test run.

Each unit under test receives an ordinal number n, and each test for a unit under test receives an
ordinal number m in the style Un.m.

Coverage Summary
The coverage summary has two subsections:

• Tests — The simulation start and stop time of each test case and any setup commands that
preceded the simulation. The heading for each test case includes any test case label specified
using the cvtest command. This section only shows when the report does not contain an
“Aggregated Tests” on page 6-11 section.

• Summary — Summaries of the subsystem results. To see detailed results for a specific subsystem,
in the Summary subsection, click the subsystem name.

6 Results Review

6-12

Details
The Details section reports the detailed model coverage results. Each section of the detailed report
summarizes the results for the metrics that test each object in the model:

• “Filtered Objects” on page 6-14
• “Model Details” on page 6-14
• “Subsystem Details” on page 6-14
• “Block Details” on page 6-15
• “Chart Details” on page 6-16
• “Coverage Details for MATLAB Functions and Simulink Design Verifier Functions” on page 6-17
• “Requirement Testing Details” on page 6-20

You can also access a model element Details subsection as follows:

1 Right-click a Simulink element.
2 In the context menu, select Coverage > Report.

 Top-Level Model Coverage Report

6-13

Filtered Objects

The Filtered Objects section lists all the objects in the model that were filtered from coverage
recording, and the rationale you specified for filtering those objects. If the filter rule specifies that all
blocks of a certain type be filtered, all those blocks are listed here.

In the following graphic, several blocks, subsystems, and transitions were filtered. Two library-linked
blocks, protected division and protected division1, were filtered because their block library was
filtered.

Model Details

The Details section contains a results summary for the model as a whole, followed by a list of
elements. Click the model element name to see its coverage results.

The following graphic shows the Details section for the sldemo_fuelsys example model.

Subsystem Details

Each subsystem Details section contains a summary of the test coverage results for the subsystem
and a list of the subsystems it contains. The overview is followed by sections for blocks, charts, and
MATLAB functions, one for each object that contains a decision point in the subsystem.

6 Results Review

6-14

The following graphic shows the coverage results for the Engine Gas Dynamics subsystem in the
sldemo_fuelsys example model.

Block Details

The following graphic shows decision coverage results for the MinMax block in the Mixing &
Combustion subsystem of the Engine Gas Dynamics subsystem in the sldemo_fuelsys example
model.

 Top-Level Model Coverage Report

6-15

The Uncovered Links element first appears in the Block Details section of the first block in the model
hierarchy that does not achieve 100% coverage. The first Uncovered Links element has an arrow that
links to the Block Details section in the report of the next block that does not achieve 100% coverage.

Subsequent blocks that do not achieve 100% coverage have links to the Block Details sections in the
report of the previous and next blocks that do not achieve 100% coverage.

Chart Details

The following graphic shows the coverage results for the Stateflow chart control_logic in the
sldemo_fuelsys example model.

6 Results Review

6-16

For more information about model coverage reports for Stateflow charts and their objects, see
“Model Coverage for Stateflow Charts” on page 5-67.

Coverage Details for MATLAB Functions and Simulink Design Verifier Functions

By default, Simulink Coverage records coverage for all MATLAB functions in a model. MATLAB
functions are in MATLAB Function blocks, Stateflow charts, or external MATLAB files.

Note For a detailed example of coverage reports for external MATLAB files, see “External MATLAB
File Coverage Report” on page 6-3.

 Top-Level Model Coverage Report

6-17

To record Simulink Design Verifier coverage for sldv.* functions called by MATLAB functions, and
any Simulink Design Verifier blocks, select Objectives and Constraints on the Coverage pane of
the Configuration Parameters dialog box.

The following example shows coverage details for a MATLAB function, hFcnsInExternalEML, that
calls four Simulink Design Verifier functions. In this example, the code for hFcnsInExternalEML
resides in an external file.

This example also shows Simulink Design Verifier coverage details for the following functions:

• sldv.assume
• sldv.condition
• sldv.prove
• sldv.test

In the coverage results, code that achieves 100% coverage is green. Code that achieves less than
100% coverage is red.

6 Results Review

6-18

Coverage for the hFcnsInExternalEML function and the sldv.* calls is:

• Line 1, the function declaration for hFcnsInExternalEMLis green because the simulation
executes that function at least once. fcn calls hFcnsInExternalEML 11 times during simulation.

Line 4, sldv.assume(u1 > u2), achieves 0% coverage because u1 > u2 never evaluates to
true.

• Line 5, sldv.condition(u1 == 0), achieves 100% coverage because u1 == 0 evaluates to
true for at least one time step.

• Line 6, switch u1, achieves 25% coverage because only one of the four outcomes in the switch
statement (case 0) occurs during simulation.

 Top-Level Model Coverage Report

6-19

• Line 17, sldv.test(y > u1); sldv.test (y == 4) achieves 50% coverage. The first
sldv.test call achieves 100% coverage, but the second sldv.test call achieves 0% coverage.

For more information about coverage for MATLAB functions, see “Model Coverage for MATLAB
Functions” on page 5-45.

For more information about coverage for Simulink Design Verifier functions, see “Objectives and
Constraints Coverage” on page 1-6.

Requirement Testing Details

If you run at least two test cases in Simulink Test that are linked to requirements in Simulink
Requirements, the aggregated coverage report details the links between model elements, test cases,
and linked requirements.

The Requirement Testing Details section includes:

• Implemented Requirements — Which requirements are linked to the model element.
• Verified by Tests — Which tests verify the requirement.
• Associated Runs — Which runs are associated with each verification test.

6 Results Review

6-20

For an example of how to trace coverage results to requirements in a coverage report, see “Trace
Coverage Results to Requirements by Using Simulink Test and Simulink Requirements” on page 5-36.

Cyclomatic Complexity
You can specify that the model coverage report include cyclomatic complexity numbers in two
locations in the report:

• The Summary section contains the cyclomatic complexity numbers for each object in the model
hierarchy. For a subsystem or Stateflow chart, that number includes the cyclomatic complexity
numbers for all their descendants.

 Top-Level Model Coverage Report

6-21

• The Details sections for each object list the cyclomatic complexity numbers for all individual
objects.

6 Results Review

6-22

Decisions Analyzed
The Decisions analyzed table lists possible outcomes for a decision and the number of times that an
outcome occurred in each test simulation. Outcomes that did not occur are in red highlighted table
rows.

The following graphic shows the Decisions analyzed table for the Saturate block in the Throttle &
Manifold subsystem of the Engine Gas Dynamics subsystem in the sldemo_fuelsys example model.

To display and highlight the block in question, click the block name at the top of the section
containing the block’s Decisions analyzed table.

 Top-Level Model Coverage Report

6-23

Conditions Analyzed
The Conditions analyzed table lists the number of occurrences of true and false conditions on each
input port of the corresponding block.

MCDC Analysis
The MCDC analysis table lists the MCDC input condition cases represented by the corresponding
block and the extent to which the reported test cases cover the condition cases.

Each row of the MCDC analysis table represents a condition case for a particular input to the block. A
condition case for input n of a block is a combination of input values. Input n is called the deciding
input of the condition case. Changing the value of input n alone changes the value of the block's
output.

The MCDC analysis table shows a condition case expression to represent a condition case. A
condition case expression is a character string where:

• The position of a character in the string corresponds to the input port number.
• The character at the position represents the value of the input. (T means true; F means false).
• A boldface character corresponds to the value of the deciding input.

For example, FTF represents a condition case for a three-input block where the second input is the
deciding input.

The Decision/Condition column specifies the deciding input for an input condition case. The True Out
column specifies the deciding input value that causes the block to output a true value for a condition
case. The True Out entry uses a condition case expression, for example, FF, to express the values of
all the inputs to the block, with the value of the deciding variable in bold.

6 Results Review

6-24

Parentheses around the expression indicate that the specified combination of inputs did not occur
during the first (or only) test case included in this report. In other words, the test case did not cover
the corresponding condition case. The False Out column specifies the deciding input value that
causes the block to output a false value and whether the value actually occurred during the first (or
only) test case included in the report.

Some model elements achieve less MCDC coverage depending on the MCDC definition used during
analysis. For more information on how the MCDC definition used during analysis affects the coverage
results, see “Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage” on
page 5-3.

If you select Treat Simulink Logic blocks as short-circuited in the Coverage pane in the
Configuration Parameters dialog box, MCDC coverage analysis does not verify whether short-
circuited inputs actually occur. The MCDC analysis table uses an x in a condition expression (for
example, TFxxx) to indicate short-circuited inputs that were not analyzed by the tool.

If you disable this feature and Logic blocks are not short-circuited while collecting model coverage,
you might not be able to achieve 100% coverage for that block.

Select the Treat Simulink Logic blocks as short-circuited option for where you want the MCDC
coverage analysis to approximate the degree of coverage that your test cases achieve for the
generated code (most high-level languages short-circuit logic expressions).

Cumulative Coverage
After you record successive coverage results, you can “Access, Manage, and Accumulate Coverage
Results by Using the Results Explorer” on page 3-7 from within the Coverage Results Explorer. By
default, the results of each simulation are saved and recorded cumulatively in the report.

If you select Show cumulative progress report in the “Results” on page 3-6 section of the
configuration parameters, the results located in the right-most area in all tables of the cumulative
coverage report reflect the running total value. The report is organized so that you can easily
compare the additional coverage from the most recent run with the coverage from all prior runs in
the session.

A cumulative coverage report contains information about:

• Current Run — The coverage results of the simulation just completed.
• Delta — Percentage of coverage added to the cumulative coverage achieved with the simulation

just completed. If the previous simulation's cumulative coverage and the current coverage are
nonzero, the delta may be 0 if the new coverage does not add to the cumulative coverage.

• Cumulative — The total coverage collected for the model up to, and including, the simulation just
completed.

After running three test cases, the Summary report shows how much additional coverage the third
test case achieved and the cumulative coverage achieved for the first two test cases.

 Top-Level Model Coverage Report

6-25

The Decisions analyzed table for cumulative coverage contains three columns of data about decision
outcomes that represent the current run, the delta since the last run, and the cumulative data,
respectively.

The Conditions analyzed table uses column headers #n T and #n F to indicate results for individual
test cases. The table uses Tot T and Tot F for the cumulative results. You can identify the true and
false conditions on each input port of the corresponding block for each test case.

The MCDC analysis #n True Out and #n False Out columns show the condition cases for each test
case. The Total Out T and Total Out F column show the cumulative results.

6 Results Review

6-26

Note You can calculate cumulative coverage for reusable subsystems and Stateflow constructs at the
command line. For more information, see “Obtain Cumulative Coverage for Reusable Subsystems and
Stateflow® Constructs” on page 5-34.

N-Dimensional Lookup Table
The following interactive chart summarizes the extent to which elements of a lookup table are
accessed. In this example, two Sine Wave blocks generate x and y indices that access a 2-D Lookup
Table block of 10-by-10 elements filled with random values.

In this model, the lookup table indices are 1, 2,..., 10 in each direction. The Sine Wave 2 block is out
of phase with the Sine Wave 1 block by pi/2 radians. This generates x and y numbers for the edge of a
circle, which you see when you examine the resulting Lookup Table coverage.

 Top-Level Model Coverage Report

6-27

The report contains a two-dimensional table representing the elements of the lookup table. The
element indices are represented by the cell border grid lines, which number 10 in each dimension.
Areas where the lookup table interpolates between table values are represented by the cell areas.
Areas of extrapolation left of element 1 and right of element 10 are represented by cells at the edge
of the table, which have no outside border.

The number of values interpolated (or extrapolated) for each cell (execution counts) during testing is
represented by a shade of green assigned to the cell. Each of six levels of green shading and the
range of execution counts represented are displayed on one side of the table.

If you click an individual table cell, you see a dialog box that displays the index location of the cell
and the exact number of execution counts generated for it during testing. The following example
shows the contents of a color-shaded cell on the right edge of the circle.

The selected cell is outlined in red. You can also click the extrapolation cells on the edge of the table.

6 Results Review

6-28

A bold grid line indicates that at least one block input equal to its exact index value occurred during
the simulation. Click the border to display the exact number of hits for that index value.

The following example model uses an n-D Lookup Table block of 10-by-10-by-5 elements filled with
random values.

Both the x and y table axes have the indices 1, 2,..., 10. The z axis has the indices 10, 20,..., 50.
Lookup table values are accessed with x and y indices that the two Sine Wave blocks generated, in
the preceding example, and a z index that a Ramp block generates.

After simulation, you see the following lookup table report.

 Top-Level Model Coverage Report

6-29

Instead of a two-dimensional table, the link Force Map Generation displays the following tables:

Lookup table coverage for a three-dimensional lookup table block is reported as a set of two-
dimensional tables.

The vertical bars represent the exact z index values: 10, 20, 30, 40, 50. If a vertical bar is bold, this
indicates that at least one block input was equal to the exact index value it represents during the
simulation. Click a bar to get a coverage report for the exact index value that bar represents.

You can report lookup table coverage for lookup tables of any dimension. Coverage for four-
dimensional tables is reported as sets of three-dimensional sets, like those in the preceding example.
Five-dimensional tables are reported as sets of sets of three-dimensional sets, and so on.

6 Results Review

6-30

Block Reduction
All model coverage reports indicate the status of the Simulink Block reduction parameter at the
beginning of the report. In the following example, you set Force block reduction off.

In the next example, you enabled the Simulink Block reduction parameter, and you did not set
Force block reduction off.

Consider the following model where the simulation does not execute the MinMax1 block because
there is only one input — In3.

If you set Force block reduction off, the report contains no coverage data for this block because the
minimum input to the MinMax1 block is always 1.

If you do not set Force block reduction off, the report contains no coverage data for reduced
blocks.

 Top-Level Model Coverage Report

6-31

Relational Boundary
On the “Coverage Pane” on page 3-2 of the Configuration Parameters dialog box, if you select the
Relational Boundary coverage metric, the software creates a Relational Boundary table in the
model coverage report for each model object that is supported for this coverage. The table applies to
the explicit or implicit relational operation involved in the model object. For more information, see:

• “Relational Boundary Coverage” on page 1-7.
• The Relational Boundary column in “Model Objects That Receive Coverage” on page 2-2.

The tables below show the relational boundary coverage report for the relation input1 <= input2.
The appearance of the tables depend on the operand data type.

• “Integers” on page 6-32
• “Fixed point” on page 6-33
• “Floating point” on page 6-33

Integers

If both operands are integers (or if one operand is an integer and the other a Boolean), the table
appears as follows.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

is equal to -1.
• The third row states the number of times during the simulation that operand_1 is equal to

operand_2.

6 Results Review

6-32

• The fourth row states the number of times during the simulation that operand_1 - operand_2
is equal to 1.

Fixed point

If one of the operands has fixed-point type and the other operand is either a fixed point or an integer,
the table appears as follows. LSB represents the value of the least significant bit. For more
information, see “Precision” (Fixed-Point Designer). If the two operands have different precision, the
smaller value of precision is used.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

is equal to -LSB.
• The third row states the number of times during the simulation that operand_1 is equal to

operand_2.
• The fourth row states the number of times during the simulation that operand_1 - operand_2

is equal to LSB.

Floating point

If one of the operands has floating-point type, the table appears as follows. tol represents a value
computed using the input values and a tolerance that you specify. If you do not specify a tolerance,
the default values are used. For more information, see “Relational Boundary Coverage” on page 1-7.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.

 Top-Level Model Coverage Report

6-33

• The second row states the number of times during the simulation that operand_1 - operand_2
has values in the range [-tol..0].

• The third row states the number of times during the simulation that operand_1 - operand_2
has values in the range (0..tol] during the simulation.

The appearance of this table changes according to the relational operator in the block. Depending on
the relational operator, the value of operand_1 - operand_2 equal to 0 is either:

• Excluded from relational boundary coverage.
• Included in the region above the relational boundary.
• Included in the region below the relational boundary.

Relational Operator Report Format Explanation
== [-tol..0) 0 is excluded.

(0..tol]
!= [-tol..0) 0 is excluded.

(0..tol]
<= [-tol..0] 0 is included in the region below

the relational boundary.(0..tol]
< [-tol..0) 0 is included in the region above

the relational boundary.[0..tol]
>= [-tol..0) 0 is included in the region above

the relational boundary.[0..tol]
> [-tol..0] 0 is included in the region below

the relational boundary.(0..tol]

0 is included below the relational boundary for <= but above the relational boundary for <. This rule
is consistent with decision coverage. For instance:

• For the relation input1 <= input2, the decision is true if input1 is less than or equal to
input2. < and = are grouped together. Therefore, 0 lies in the region below the relational
boundary.

• For the relation input1 < input2, the decision is true only if input1 is less than input2. > and
= are grouped together. Therefore, 0 lies in the region above the relational boundary.

Saturate on Integer Overflow Analysis
On the “Coverage Pane” on page 3-2 of the Configuration Parameters dialog box, if you select the
Saturate on integer overflow coverage metric, the software creates a Saturation on Overflow
analyzed table in the model coverage report. The software creates the table for each block with the
Saturate on integer overflow parameter selected.

The Saturation on Overflow analyzed table lists the number of times a block saturates on integer
overflow, indicating a true decision. If the block does not saturate on integer overflow, the table
indicates a false decision. Outcomes that do not occur are in red highlighted table rows.

6 Results Review

6-34

The following graphic shows the Saturation on Overflow analyzed table for the MinMax block in the
Mixing & Combustion subsystem of the Engine Gas Dynamics subsystem in the sldemo_fuelsys
example model.

To display and highlight the block in question, click the block name at the top of the section
containing the block’s Saturation on Overflow analyzed table.

Signal Range Analysis
If you select the Signal Range coverage metric, the software creates a Signal Range Analysis section
at the bottom of the model coverage report. This section lists the maximum and minimum signal
values for each output signal in the model measured during simulation.

Access the Signal Range Analysis report quickly with the Signal Ranges link in the nonscrolling
region at the top of the model coverage report, as shown below in the sldemo_fuelsys example
model report.

 Top-Level Model Coverage Report

6-35

Each block is reported in hierarchical fashion; child blocks appear directly under parent blocks. Each
block name in the Signal Ranges report is a link. For example, select the EGO sensor link to display
this block highlighted in its native diagram.

Signal Size Coverage for Variable-Dimension Signals
If you select Signal Size, the software creates a Variable Signal Widths section after the Signal
Ranges data in the model coverage report. This section lists the maximum and minimum signal sizes
for all output ports in the model that have variable-size signals. It also lists the memory that Simulink
allocated for that signal, as measured during simulation. This list does not include signals whose size
does not vary during simulation.

The following example shows the Variable Signal Widths section in a coverage report. In this
example, the Abs block signal size varied from 2 to 5, with an allocation of 5.

6 Results Review

6-36

Each block is reported in hierarchical fashion; child blocks appear directly under parent blocks. Each
block name in the Variable Signal Widths list is a link. Clicking on the link highlights the
corresponding block in the Simulink Editor. After the analysis, the variable-size signals have a wider
line design.

Simulink Design Verifier Coverage
If you select Objectives and Constraints, the analysis collects coverage data for all Simulink Design
Verifier blocks in your model.

For an example of how this works, open the sldvdemo_debounce_testobjblks model.

This model contains two Test Objective blocks:

• The True block defines a property that the signal have a value of 2.
• The Edge block, inside the Masked Objective subsystem, describes the property where the output

of the AND block in the Masked Objective subsystem changes from 2 to 1.

The Simulink Design Verifier software analyzes this model and produces a harness model that
contains test cases that achieve certain test objectives. To see if the original model achieves those
objectives, simulate the harness model and collect model coverage data. The model coverage tool
analyzes any decision points or values within an interval that you specify in the Test Objective block.

In this example, the coverage report shows that you achieved 100% coverage of the True block
because the signal value was 2 at least once. The signal value was 2 in 6 out of 14 time steps.

 Top-Level Model Coverage Report

6-37

The input signal to the Edge block achieved a value of True once out of 14 time steps.

6 Results Review

6-38

Export Model Coverage Web View
You can export a Model Coverage Web View for your model. A Web View is an interactive rendition of
a model that you can view in a Web browser. A Model Coverage Web View includes model coverage
highlighting and analysis information from the Coverage Display Window, as described in “View
Coverage Results in a Model” on page 5-22.

Use the Results Explorer to generate a Model Coverage Web View. After you record coverage, you
access the Results Explorer from the Coverage app. In the Results Explorer, open the Settings,
select Generate Web View Report, and click Apply.

Next, select the Current Cumulative Data click Generate report.

When you generate a coverage report for your model with these settings enabled, the software
generates a Model Coverage Web View that you can open in a browser. To see model coverage
information for a block in a Model Coverage Web View, click that block. The model coverage data
appears in the Informer pane, below the model.

 Export Model Coverage Web View

6-39

For more information, see “Web Views” (Simulink Report Generator).

6 Results Review

6-40

Excluding Model Objects from Coverage

• “Coverage Filtering” on page 7-2
• “Coverage Filter Rules and Files” on page 7-4
• “Model Objects to Filter from Coverage” on page 7-5
• “Create, Edit, and View Coverage Filter Rules” on page 7-6
• “Applied filters section of the coverage Results Explorer” on page 7-10
• “Creating and Using Coverage Filters” on page 7-11

7

Coverage Filtering

In this section...
“When to Use Coverage Filtering” on page 7-2
“What Is Coverage Filtering?” on page 7-2

When to Use Coverage Filtering
Use coverage filtering to facilitate a bottom-up approach to recording model coverage. If you have a
large model, there can be design elements that intentionally do not record 100% coverage. You can
also have several design elements that you require to record 100% coverage but that do not achieve
100% coverage. You can temporarily or permanently eliminate these elements from coverage
recording to focus on a subset of objects for testing and modification.

You can then iterate more efficiently—focus on a small issue, fix it, and then move on to resolve the
next small issue. Before recording coverage for the entire model, you can resolve missing coverage
issues within individual parts of the model.

What Is Coverage Filtering?
Coverage filtering enables you to exclude certain model objects from model coverage reporting after
you simulate your Simulink model. You specify which objects you want to filter from coverage
recording. There are two modes of filtering, Excluded and Justified.

Excluded objects do not contribute to coverage reports. After you specify the objects to exclude when
you simulate your model, the coverage report does not record coverage for those objects.

Justified objects do contribute to coverage reports. After you specify the objects to justify when you
simulate your model, the coverage report considers these blocks as achieving 100% coverage, and
they appear light blue in the “Coverage Summary” on page 6-12.

In the “Details” on page 6-13 section of the coverage report, justified objects show their coverage
outcomes as ((covered outcomes + justified outcomes)/possible decisions).

7 Excluding Model Objects from Coverage

7-2

To filter objects, see “Create, Edit, and View Coverage Filter Rules” on page 7-6 and “Creating and
Using Coverage Filters” on page 7-11.

 Coverage Filtering

7-3

Coverage Filter Rules and Files
In this section...
“What Is a Coverage Filter Rule?” on page 7-4
“What Is a Coverage Filter File?” on page 7-4

What Is a Coverage Filter Rule?
A coverage filter rule specifies a model object, a set of objects, or lines of code that you want to
exclude from coverage recording or that you want to justify for coverage.

Each coverage filter rule includes the following fields:

• Name—Name or path of the object to filter from coverage
• Type—Whether a specific object is filtered or all objects of a given type are filtered
• Mode—Whether the object to be filtered is Excluded or Justified

Coverage reports do not include Excluded blocks. The coverage reports assume that Justified
blocks receive full coverage, but show that they are distinct from other covered blocks in the
coverage report.

• Rationale—An optional description that describes why this object is filtered from coverage

What Is a Coverage Filter File?
A coverage filter file is a set of coverage filter rules. Each rule specifies one or more objects or lines
of code to exclude from coverage recording.

After you create and apply coverage filter rules, the specified objects or lines of code are excluded
from coverage when you generate a report. You can reuse a coverage filter file for several Simulink
models.

When you make changes to the coverage filter rules after you record coverage, you can update the
coverage report without needing to resimulate your model. After you make changes, click Apply, then
click Generate Report in the Applied filters section of the coverage Results Explorer to update the
report.

If you use the default file name for the active model, and the coverage filter file exists on the MATLAB
path, you see the coverage filter rules each time that you open the model. To save your current
coverage filter rules to a file, click Save filter. To load an existing coverage filter file, click Load
filter.

For more information on filtering objects, see “Create, Edit, and View Coverage Filter Rules” on page
7-6 and “Creating and Using Coverage Filters” on page 7-11.

7 Excluding Model Objects from Coverage

7-4

Model Objects to Filter from Coverage
In your model, the objects that you can filter from coverage recording are:

• Simulink blocks that receive coverage, including MATLAB Function blocks
• Subsystems and their contents. When you exclude a subsystem from coverage recording, none of

the objects inside the subsystem record coverage.
• Individual library-linked blocks or charts
• All reference blocks linked to a library
• Stateflow charts, subcharts, states, transitions, and events

For a complete list of model objects that receive coverage, see “Model Objects That Receive
Coverage” on page 2-2.

 Model Objects to Filter from Coverage

7-5

Create, Edit, and View Coverage Filter Rules

In this section...
“Create and Edit Coverage Filter Rules” on page 7-6
“Save Coverage Filter to File” on page 7-8
“Create New Coverage Filter File” on page 7-8
“Load Coverage Filter File” on page 7-8
“Remove Applied Coverage Filter” on page 7-9
“Manage Applied filters by Using the Simulink Test Manager” on page 7-9
“Update the Report with the Current Filter Settings” on page 7-9
“View Coverage Filter Rules in Your Model” on page 7-9

Create and Edit Coverage Filter Rules
• “Create a Coverage Filter Rule” on page 7-6
• “Select the Filtering Mode” on page 7-7
• “Add Rationale to a Coverage Filter Rule” on page 7-7
• “Justify Dead Logic from Simulink Design Verifier Dead Logic Analysis” on page 7-7
• “Justify Dead Logic from Polyspace Code Prover Results” on page 7-8

Create a Coverage Filter Rule

To create a coverage filter rule:

1 Enable model coverage.
2 To record coverage results, simulate the model.
3 Create a new filter rule in one of these ways:

• In the model window, right-click a model object and select Coverage > Exclude.
• In the Details section of the Coverage Report, click Justify or Exclude for a model object.
• Create a new coverage filter file directly from the coverage Results Explorer:

a Click Applied filters.
b Click New filter.
c Enter a Name and Description for the filter.
d Click Save as.
e Specify a file name and folder for the filter file and click Save.

Alternatively, you can right-click the Applied filters label and select New filter

Depending on which option you select, the Type field in the “Applied filters section of the coverage
Results Explorer” on page 7-10 is set for the coverage filter rule you selected. You cannot override
the value in the Type field.

7 Excluding Model Objects from Coverage

7-6

Select the Filtering Mode

When you create a filtering rule, the default filtering mode is Excluded. Excluded objects do not
appear in the coverage reports. You can also set the filtering mode to Justified. Justified blocks
appear as achieving 100% coverage.

For more information, see “Coverage Filtering” on page 7-2.

Add Rationale to a Coverage Filter Rule

Optionally, you can add text that describes why you exclude that object or objects from coverage
recording. This information can be useful to others who review the coverage for your model. When
you add a coverage filter rule, the Applied filters section of the coverage Results Explorer opens. To
add the rationale:

1 Double-click the Rationale field for the rule.
2 Delete the existing text.
3 Add the rationale for excluding this object.

Note The Rationale field and Mode field are the only coverage filter rule fields that you can edit in
the Applied filters section of the coverage Results Explorer.

After you add a new coverage filter rule or edit an existing coverage filter rule, click Apply to enable
the Generate report and Highlight model with coverage results links.

Justify Dead Logic from Simulink Design Verifier Dead Logic Analysis

You can create justification rules in the coverage Results Explorer using the dead logic detected
during a Simulink Design Verifier Dead Logic Analysis.

1 Open the Results Explorer from the Coverage app.
2 Click Applied filters to access the coverage filters.
3 Click Make justification filter rules for dead logic (using Simulink Design Verifier).

Simulink Design Verifier runs the Dead Logic Analysis and populates the list of filters.
4 Click Generate report.

The justified rules from the previous step are shown in the Objects Filtered from Coverage
Analysis section at the beginning of the report. To navigate to the rules’ corresponding items in
the Details section of the report, use the hyperlinks in the rule descriptions. Clicking the
hyperlinks in the Rationale column navigates to the coverage Results Explorer.

 Create, Edit, and View Coverage Filter Rules

7-7

You can add justification rules for elements that do not receive coverage to the filter by clicking
 in the Details section of the report.

Justify Dead Logic from Polyspace Code Prover Results

You can create justification rules for code coverage in the coverage Results Explorer using
Polyspace® Code Prover™ results.

1 Open the Results Explorer from the Coverage app.
2 Click Applied filters to access the coverage filters.
3 Click Make justification filter rules for dead logic (using Polyspace Code Prover results).

Polyspace Code Prover runs and populates the list of filters.
4 Click Generate report.

Save Coverage Filter to File
After you define the coverage filter rules, save the rules to a file so that you can reuse them with this
model or other models. By default, coverage filter files are named <model_name>_covfilter.cvf.

1 In the Apps tab, click Coverage Analyzer. In the Coverage tab, open the coverage Results
Explorer.

2 Click Applied filters, then select your filter.
3 Enter a Name and Description for the filter, if none already exist.
4 Click Apply. A save dialog box opens.
5 Specify a file name and folder for the filter file and click Save.

If you make multiple changes to the coverage filter rules, apply the changes to the coverage filter file
each time.

Create New Coverage Filter File
You can create a new coverage filter file directly from the coverage Results Explorer.

1 Click Applied filters.
2 Click New filter. Alternatively, you can right-click Applied filters and select New filter.
3 Enter a Name and Description for the filter.
4 Click Apply. A save dialog box opens.
5 Specify a file name and folder for the filter file and click Save.

Load Coverage Filter File
After you save a coverage filter file, you can load the coverage filter file for use in other models. In
the coverage Results Explorer:

1 Click Applied filters.
2 Click Load filter. Alternatively, you can right-click Applied filters and select Load filter.
3 Navigate to the filter file and click Open.

7 Excluding Model Objects from Coverage

7-8

You can load multiple coverage filter files for any model. Loaded filter files show in the Applied
filters section of the coverage Results Explorer.

Two or more models can have the same coverage filter file attached. If a model has an attached filter
file that contains coverage filter rules for specific objects in a different model, those rules are ignored
during coverage recording.

Remove Applied Coverage Filter
To remove an applied coverage filter, from the coverage Results Explorer:

1 Expand the Applied filters.
2 Right-click the coverage filter you want to remove and select Remove.

Manage Applied filters by Using the Simulink Test Manager
You can also add and remove coverage filter files from the Simulink Test Manager. For more
information, see “Coverage Filtering Using the Test Manager” (Simulink Test).

Update the Report with the Current Filter Settings
If you change the filtering settings or add filters after you simulate the model, you can update the
coverage report and model highlighting without resimulating the model. After you have simulated the
model, in the Current Cumulative Data section of the Applied filters section of the coverage Results
Explorer:

1 Apply or Revert any changes you have made.
2 Click Generate Report.

View Coverage Filter Rules in Your Model
Whenever you define a coverage filter rule or remove an existing coverage filter rule, the Applied
filters section of the coverage Results Explorer opens. This pane lists the coverage filter rules for
your applied filters. For more information, see “Applied filters section of the coverage Results
Explorer” on page 7-10.

The list of currently applied filters for a model is available in the Applied filters section of the
coverage Results Explorer. Alternatively, you can right-click anywhere in the model window and select
Coverage > Open Filter Viewer.

If you are inside a subsystem, you can view any coverage filter rule attached to the subsystem. To
open the Applied filters section of the coverage Results Explorer, right-click any object inside the
subsystem and select Coverage > Show filter parent.

 Create, Edit, and View Coverage Filter Rules

7-9

Applied filters section of the coverage Results Explorer
In the Applied filters section of the coverage Results Explorer, you can:

• Review and manage the coverage filter rules for your Simulink model.
• Create, load, or save coverage filter files for your model.
• Navigate to the model to create additional coverage filter rules.

To access the Applied filters section of the coverage Results Explorer:

• “Create a Coverage Filter Rule” on page 7-6
• From the Coverage Analyzer app, open the coverage Results Explorer. Currently applied filters are

listed under the Applied filters label, or you can create a new coverage filter file.

To Action
Navigate to a model object associated with a rule. 1 Select the rule.

2 Click View in model.
Delete a rule. 1 Select the rule.

2 Click Remove rule.
Save the current rules to a file. 1 Click Save filter.

2 Specify a file name and folder for the filter
file and click Save.

Load an existing coverage filter file. 1 Click Load filter.
2 Navigate to the filter file and click Open.

Create a new coverage filter file. 1 Right-click Applied filters and select New
filter.

Update the current coverage report with the
current filtering rules.

1 Apply or Revert any changes you have
made.

2 Click Generate Report.

7 Excluding Model Objects from Coverage

7-10

Creating and Using Coverage Filters
This example shows how to use Simulink® Coverage™ model coverage filters to exclude model items
from coverage results and justify missing coverage in reports.

Coverage Filters

During the verification process, a model can contain several constructs that prevent full model
coverage, such as a subsystem that contains a driver for a controller that is not tested and is not
relevant to the validation process. You can exclude this subsystem from the coverage results.

Alternatively, you may have testing criteria that requires exercising certain aspects of a block, such
as hitting particular decision points. If it is not feasible to satisfy all objective outcomes for this block,
and you did not intend for your tests to exercise these unsatisfied outcomes, then you could justify
this missing coverage.

Filtering these constructs in coverage results by excluding or justifying them allows you to focus on
other aspects of missing coverage that can and should be tested.

Coverage filters are stored in .cvf files. Each filter consists of rules that exclude or justify certain
model objects, or individual coverage objective outcomes. Multiple filter files can be applied to
coverage results for a model. Furthermore, multiple models can also make use of the same filter file.

Coverage filters can be created and applied either before or after simulating a model. Both workflows
are described in this example.

Open Model

This example makes use of the slvnvdemo_covfilt model. The model shows some common
patterns that might need to be filtered from coverage results. Open the model.

open_system('slvnvdemo_covfilt');

 Creating and Using Coverage Filters

7-11

Specify Items to Exclude from Coverage Results before Simulation

The library block slvnvdemo_covfilt_lib/protected division protects against division by
zero. If you determine that your testing is not expected or intended to fully cover every instance of
this block in this context, the block can be excluded from coverage results.

In the Simulink Editor, right-click an instance of the protected division library block and
navigate to the Coverage options. The options for this block allow you to filter the specific instance of
the library or all references to this library. Select Exclude referenced library:
slvnvdemo_covfilt_lib/protected division to filter all references.

7 Excluding Model Objects from Coverage

7-12

This opens the Filter Editor section of the Coverage Results Explorer. Note that a new filter file,
initially named Untitled, has been created, and the filter rule for excluding all references to the
library block has been added.

 Creating and Using Coverage Filters

7-13

Specify a Name and Description for the new filter file. In the table, open the Rationale field for the
new rule and enter text describing why this block is excluded, such as "division by zero
protection". Click Apply when finished to save the filter file. A file dialog will prompt you to
specify where to save this file.

7 Excluding Model Objects from Coverage

7-14

Reuse Existing Filter File

You can share and reapply filter files with generalized rules to filter coverage results for various
different models that contain similar constructs.

For example, the existing filter file Filter_Tick.cvf captures a rule to exclude the Stateflow
temporal event tick from coverage results. This event can never be false and, therefore, could
prevent full Condition and MCDC coverage in any model using tick in event-based temporal logic in
Stateflow.

Because slvnvdemo_covfilt/Mode Logic contains such a construct, you can apply the filter file
Filter_Tick.cvf to the model.

To apply this existing filter file, right-click on the Applied filters node in the Coverage Results
Explorer and select Load filter. In the file dialog that opens, select Filter_Tick.cvf and click
Open.

 Creating and Using Coverage Filters

7-15

Note that Applied filters now lists both Filter_DivBy0 and Filter_Tick.

7 Excluding Model Objects from Coverage

7-16

Simulate and Review Filtered Coverage Results

Click the Run (Coverage) button to simulate the model and record coverage. When the simulation
completes, coverage results are highlighted on the model and the Coverage Details window is
opened.

Notice that both references to the protected division library block are colored gray in the
Simulink canvas, indicating that they have been excluded from the coverage results.

Scroll through the content in the Coverage Details window, and note the section titled Objects
Filtered from Coverage Analysis. This section lists each of the excluded elements and the
corresponding rationales for each and is organized by filter file. Both Filter_DivBy0 and
Filter_Tick have been applied.

 Creating and Using Coverage Filters

7-17

Create a New Filter File

The filter files used above capture generalized filter rules that could be broadly applicable to many
different models.

Create another filter file to separately capture filter rules exclusively relevant to this model.

In the Coverage Results Explorer, right-click on the Applied filters node and select New filter.

Enter a name and description for this filter file. Click Apply and specify where to save the file.

7 Excluding Model Objects from Coverage

7-18

Exclude Items from Coverage Results after Simulation

The previous sections of this example show how to specify filter rules to apply before running a
simulation. You can also create and apply filter rules to coverage results after simulation. This allows
you to review coverage results, create or adjust filters, and generate a new coverage report without
having to rerun the simulation.

Consider, for example, the Switchable config subsystem. It is a common design pattern to use
constant values to drive subsystem enable ports for changing model configurations; however, the
enable logic and subsystem contents might lead to missing coverage. This configuration is not used in
this model, and therefore can be excluded from coverage results.

In the Simulink Editor, click on the Switchable config subsystem. The Coverage Details window will
navigate to the details for this subsystem. Under these details, click the Justify or Exclude link.

 Creating and Using Coverage Filters

7-19

A new filter rule is added to the currently selected filter file in the Filter Editor. By default, the mode
for this rule is set to "Excluded". Enter the rationale for this rule, such as "unused config".

7 Excluding Model Objects from Coverage

7-20

Click Apply when finished. This saves the changes to the filter file and automatically updates the
coverage results displayed on the model. Notice that the Switchable config subsystem is now shown
as gray, indicating that it has been excluded from the coverage results.

 Creating and Using Coverage Filters

7-21

Justify Individual Objective Outcome from the Coverage Results

In the Simulink Editor, click on the Saturation block and review the coverage results in the
Coverage Details window. Notice that two Decision outcomes are unsatisfied. This is because the
Saturation block has a lower limit of 0 and an upper limit of 200. However, the input to this block
is the rate signal, which can never be less than or equal to 0. As such, the lower limit of the
Saturation block is not expected to be fully exercised, so the corresponding Decision outcome can
be justified.

Click on the Add justification rule icon next to the false outcome for Decision "input > lower
limit".

7 Excluding Model Objects from Coverage

7-22

A new filter rule is added to the currently selected filter file in the Filter Editor. Specify a
justification rationale, such as "rate > 0".

Click Apply when finished to save the filter file and update the coverage results shown on the model.

 Creating and Using Coverage Filters

7-23

Notice that in the Coverage Details window, the Saturation block's justified outcome is
highlighted in light blue and has a link to the rationale. The true outcome of the decision "input >=
upper limit" is not filtered and is reported as unsatisfied. As such, the Saturation block is still
highlighted red in the model to indicate missing coverage.

7 Excluding Model Objects from Coverage

7-24

Automatically Generate Filter Rules for Dead Logic

In some cases, missing coverage is due to dead logic. The associated coverage objectives are
unsatisfiable. If this logic is meant for constructs that you do not wish to remove from your model,
then those coverage objectives can be justified.

If you have a Simulink Design Verifier™ license, then you can automatically create justification filter
rules for dead logic.

In the Coverage Results Explorer, select the Applied filters node. In the Filter Editor pane,
select the option Make justification filter rules for dead logic (using Simulink Design
Verifier).

 Creating and Using Coverage Filters

7-25

This option uses Simulink Design Verifier™ to analyze the model for dead logic. Upon completion, a
new filter file is created, and justification rules are added for each of the corresponding coverage
outcomes.

7 Excluding Model Objects from Coverage

7-26

Specify a name and description for this filter file. Click Apply when finished. In the resulting file
dialog, specify where to save this filter file.

Close the Simulink Design Verifier Results windows that opened.

Review Filtered Coverage Results

In the Simulink Editor, navigate to the Review Results section of the Coverage app, and click
Coverage Highlighting.

 Creating and Using Coverage Filters

7-27

After applying all four filters used in this example, the simulation now achieves 100% Condition, 63%
Decision, and 75% Execution coverage for this model. Note that the coverage results no longer
contain any model objects that receive MCDC, so this metric is not listed.

The remaining missing coverage in the Mode Logic chart, time capture subsystem, and
Saturation block indicates inadequate testing and should be addressed by using further simulation
with input values that more thoroughly exercise these elements.

Conclusion

Coverage filtering provides various methods for indicating aspects of your model that are not
expected or intended to be fully exercised in the current testing context.

Filtering model objects and coverage objective outcomes that do not need to be exercised allows you
to focus on the missing coverage for constructs that can and should be tested.

7 Excluding Model Objects from Coverage

7-28

Automating Model Coverage Tasks

• “Automating Model Coverage Tasks” on page 8-2
• “Retrieve Coverage Details from Results” on page 8-4
• “Command Line Verification Tutorial” on page 8-7
• “Extracting Detailed Information from Coverage Data” on page 8-16
• “Operations on Coverage Data” on page 8-24
• “Record Coverage in Parallel Simulations by Using Parsim” on page 8-30
• “Filter Coverage Results Using a Script” on page 8-33

8

Automating Model Coverage Tasks
You can automate coverage analysis in a script by using the Simulink Coverage functions and classes.
For example, you might want to collect coverage data by simulating the same model with different
model parameters. Instead of changing parameters manually, you can run the simulations and collect
the coverage data in a loop.

Collect Coverage Data Using a Script
This example shows how to collect coverage data using sim.

Load the Model

First, load the model and the system you want to analyze into memory.

load_system('slvnvdemo_ratelim_harness');

Set Coverage Settings

Set up the coverage parameters using one of the methods described in sim, such as a simulation
input, parameter structure, or name-value pairs. For example, in order to use a structure of
parameters, set up a structure whose fields are names of configuration parameters, and whose values
are the corresponding values of those parameters.

paramStruct.CovEnable = 'on';
paramStruct.CovMetricStructuralLevel = 'Decision';
paramStruct.CovSaveSingleToWorkspaceVar = 'on';
paramStruct.CovSaveName = 'covData';
paramStruct.CovScope = 'Subsystem';
paramStruct.CovPath = '/Adjustable Rate Limiter';
paramStruct.StartTime = '0.0';
paramStruct.StopTime = '2.0';

For an example that uses the Simulink.SimulationInput object, see “Record Coverage in Parallel
Simulations by Using Parsim” on page 8-30.

Set up a Test and Simulate the Model

The example model uses input values that are defined in the MATLAB® workspace. The values used
in this example are defined in a data file called within_lim.mat. You can use load to load the file
into the workspace.

load within_lim.mat;

Simulate the model using sim with paramStruct as an additional input to collect coverage data
using the specified parameters.

simOut = sim('slvnvdemo_ratelim_harness',paramStruct);

For a complete list of Simulink Coverage configuration parameters, see “Coverage Settings”.

Generate a Coverage Report

You can generate an HTML report to view the coverage data that your simulation generates with
cvhtml. The first input is the name of the coverage report that will be saved in the current directory.

8 Automating Model Coverage Tasks

8-2

The second input is the cvdata object that was saved to the workspace based on the model
parameters CovSaveSingleToWorkspaceVar and CovSaveName.

You can generate the report without automatically opening it by using the flag '-sRT=0' as the third
input to cvhtml.

cvhtml('covReport',covData,'-sRT=0');

Save Coverage Data

Use cvsave to save the coverage results. The first input is the name of the coverage data file, and
the second input is the cvdata object.

cvsave('covdata',covData);

Close the Model

Exit the coverage environment by using cvexit and close the model by using close_system. A
second input of 0 indicates that you do not want to save model before closing.

cvexit
close_system('slvnvdemo_ratelim_harness',0);

Differences between sim and the Run Button
When you run a simulation with coverage enabled by using the Run button, the coverage report
opens automatically and Coverage Highlighting is enabled by default. When you run a simulation
programmatically by using sim, the coverage report does not open and Coverage Highlighting is
not enabled.

• To see coverage results displayed using model highlighting, use cvmodelview.
• To see a coverage report, use cvhtml.
• To open the Results Explorer, open the model in Simulink. In the Apps tab, click Coverage

Analyzer. Then click Results Explorer.

For another detailed example, see “Command Line Verification Tutorial” on page 8-7.

Collecting Coverage with Simulink Test
If you have a Simulink Test license, you can use the Test Manager to collect coverage data. For more
information, “Run a Test Case and Collect Coverage” (Simulink Test).

See Also
Simulink.SimulationInput | cvhtml | cvsim | cvtest | sim

More About
• “Retrieve Coverage Details from Results” on page 8-4
• “Coverage Settings”
• “Record Coverage in Parallel Simulations by Using Parsim” on page 8-30

 Automating Model Coverage Tasks

8-3

Retrieve Coverage Details from Results

Analyze Coverage Data Using A Script
This example shows how to load, parse, and query coverage data using a script.

Load Coverage Data

Load the model, then restore saved coverage data from the file covdata.cvt using cvload. The
data and test settings are retrieved in a cell array. The test settings are stored in a cvtest object
that contains the parameters from the simulation that created the coverage data.

load_system('slvnvdemo_ratelim_harness');
[savedSettings,savedData] = cvload('covdata');
savedData = savedData{1};

Extract Information from Coverage Data Objects

Retrieve coverage information from a block path or block handle by using decisioninfo. The
output is a vector with the achieved and total outcomes for a single model object.

subsysCov = decisioninfo(savedData,...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter')

subsysCov =

 5 6

Determine the percentage coverage achieved by using decisioninfo.

percentCov = 100 * (subsysCov(1)/subsysCov(2))

percentCov =

 83.3333

Specify that you want to extract the decision coverage data for the switch block called Apply Limited
Gain by using decisioninfo. This returns a structure which contains the decisions and outcomes.

[blockCov,desc] = decisioninfo(savedData, ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter/Apply limited gain');
descDecision = desc.decision;
outcome1 = desc.decision.outcome(1)
outcome2 = desc.decision.outcome(2)

outcome1 =

 struct with fields:

 text: 'false (out = in3)'
 executionCount: 0
 executedIn: []

8 Automating Model Coverage Tasks

8-4

 isFiltered: 0
 isJustified: 0
 filterRationale: ''

outcome2 =

 struct with fields:

 text: 'true (out = in1)'
 executionCount: 101
 executedIn: []
 isFiltered: 0
 isJustified: 0
 filterRationale: ''

From the decisioninfo output, you can see that the switch block called Apply Limited Gain was
never false because the false case executionCount field has a value of 0. If this behavior is
expected, and you did not intend to execute this case with your tests, you can add a filter rule to
justify this missing coverage using the slcoverage.Filter class.

First, query for the block instance to be filtered, because we only need to filter the one block instance
that received incomplete coverage, and not all instances of that block type. Then use the
slcoverage.BlockSelector class with the BlockInstance selector type to designate one block
instance for filtering.

id = getSimulinkBlockHandle('slvnvdemo_ratelim_harness/Adjustable Rate Limiter/Apply limited gain');
sel = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);

Create a filter object and a filter rule using the slcoverage.Filter and
slcoverage.FilterRule classes.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel,'Edge case',slcoverage.FilterMode.Justify);

Add the rule to the filter using the addRule method. Then save the new filter file with the save
method.

filt.addRule(rule);
filt.save('blfilter');

Create a new cvdata object from the original object, and apply the filter file to it. Use
decisioninfo on the filtered coverage data to see that there is now 100% decision coverage
because the justified objectives are counted as satisfied.

FilteredData = savedData;
FilteredData.filter = 'blfilter';
newCov = decisioninfo(FilteredData,...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter')
percentNewCov = 100 * (newCov(1)/newCov(2))

newCov =

 6 6

 Retrieve Coverage Details from Results

8-5

percentNewCov =

 100

Coverage Information Functions
After you collect coverage data, you can extract specific coverage information from the cvdata
object by using the following functions. Use these functions to retrieve the specified coverage
information for a block, subsystem, or Stateflow chart in your model, or for the model itself.

You can turn on coverage highlighting on your Simulink model by using cvmodelview. You can also
view the coverage report using cvhtml.

• complexityinfo — Cyclomatic complexity coverage
• executioninfo — Execution coverage
• conditioninfo — Condition coverage
• decisioninfo — Decision coverage
• mcdcinfo — Modified condition decision coverage (MCDC)
• overflowsaturationinfo — Saturate on integer overflow coverage
• relationalboundaryinfo — Relational boundary coverage
• sigrangeinfo — Signal range coverage
• sigsizeinfo — Signal size coverage
• tableinfo — Lookup table block coverage
• getCoverageinfo — Coverage for Simulink Design Verifier blocks

For an example that uses these functions, see “Extracting Detailed Information from Coverage Data”
on page 8-16.

See Also
slcoverage.BlockSelector | slcoverage.Filter | slcoverage.FilterRule |
slcoverage.MetricSelector

More About
• “Automating Model Coverage Tasks” on page 8-2
• “Operations on Coverage Data” on page 8-24

8 Automating Model Coverage Tasks

8-6

Command Line Verification Tutorial
This example creates three test cases for an adjustable rate limiter and analyzes the resulting model
coverage using the command-line API of the Model Coverage tool.

Simulink® Model for the Adjustable Rate Limiter

The Simulink® subsystem Adjustable Rate Limiter is a rate limiter in the model
'slvnvdemo_ratelim_harness'. It uses three switch blocks to control when the output should be limited
and the type of limit to apply.

Inputs are produced with the From Workspace blocks 'gain', 'rising limit', and 'falling limit', which
generate piecewise linear signals. The values of the inputs are specified with six variables defined in
the MATLAB® workspace: t_gain, u_gain, t_pos, u_pos, t_neg, and u_neg.

Open the model and the Adjustable Rate Limiter subsystem.

modelName = 'slvnvdemo_ratelim_harness';
open_system(modelName);
open_system([modelName,'/Adjustable Rate Limiter']);

 Command Line Verification Tutorial

8-7

Creating the First Test Case

The first test case verifies that the output matches the input when the input values do not change
rapidly. It uses a sine wave as the time varying signal and constants for rising and falling limits.

t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);

Calculate the minimum and maximum change of the time varying input using the MATLAB diff
function.

max_change = max(diff(u_gain))
min_change = min(diff(u_gain))

max_change =

 0.1253

min_change =

 -0.1253

Because the signal changes are much less than 1 and much greater than -1, set the rate limits to 1
and -1. The variables are all stored in the MAT file 'within_lim.mat', which is loaded before simulation.

t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];

save('within_lim.mat','t_gain','u_gain','t_pos','u_pos','t_neg','u_neg');

Additional Test Cases

The second test case complements the first case with a rising gain that exceeds the rate limit. After a
second it increases the rate limit so that the gain changes are below that limit.

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];

save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos','t_neg','u_neg');

The third test case is a mirror image of the second, with the rising gain replaced by a falling gain.

t_gain = [0;2];
u_gain = [-0.02;-4.02];
t_pos = [0;2];
u_pos = [0;0];
t_neg = [0;1;1;2];
u_neg = [-1;-1;-5;-5]*0.02;

save('falling_gain.mat','t_gain','u_gain','t_pos','u_pos','t_neg','u_neg');

8 Automating Model Coverage Tasks

8-8

Defining Coverage Tests

The test cases are organized and executed using sim.

In this example, a simulation input object is used to set the coverage configuration.

covSet = Simulink.SimulationInput(modelName);
covSet = setModelParameter(covSet,'CovEnable','on');
covSet = setModelParameter(covSet,'CovMetricStructuralLevel','Decision');
covSet = setModelParameter(covSet,'CovSaveSingleToWorkspaceVar','on');
covSet = setModelParameter(covSet,'CovScope','Subsystem');
covSet = setModelParameter(covSet,'CovPath','/Adjustable Rate Limiter');
covSet = setModelParameter(covSet,'StartTime','0.0');
covSet = setModelParameter(covSet,'StopTime','2.0');

Executing Coverage Tests

Load the data for the first test case, set the coverage variable name, and execute the model using
sim.

load within_lim.mat
covSet = setModelParameter(covSet,'CovSaveName','dataObj1');
simOut1 = sim(covSet);
dataObj1

dataObj1 = ... cvdata
 version: (R2021a)
 id: 1684
 type: TEST_DATA
 test: cvtest object
 rootID: 1686
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:47:37
 stopTime: 23-Feb-2021 18:47:37
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 2
 filter:
 simMode: Normal

Verify the first test case by checking that the output matches the input.

subplot(211)
plot(simOut1.tout,simOut1.yout(:,1),simOut1.tout,simOut1.yout(:,4))
xlabel('Time (sec)'), ylabel('Value'),
title('Gain input and output');
subplot(212)
plot(simOut1.tout,simOut1.yout(:,1)-simOut1.yout(:,4))
xlabel('Time (sec)'),ylabel('Difference'),
title('Difference between the gain input and output');

 Command Line Verification Tutorial

8-9

Execute and plot results for the second test case in the same way.

Notice that once the limited output has diverged from the input it can only recover at the maximum
slew rate. This is why the plot has an unusual kink. Once the input and output match, the two change
together.

load rising_gain.mat
covSet = setModelParameter(covSet,'CovSaveName','dataObj2');
simOut2 = sim(covSet);
dataObj2

subplot(211)
plot(simOut2.tout,simOut2.yout(:,1),simOut2.tout,simOut2.yout(:,4))
xlabel('Time (sec)'), ylabel('Value'),
title('Gain input and output');
subplot(212)
plot(simOut2.tout,simOut2.yout(:,1)-simOut2.yout(:,4))
xlabel('Time (sec)'), ylabel('Difference'),
title('Difference between the gain input and output');

dataObj2 = ... cvdata
 version: (R2021a)
 id: 1800
 type: TEST_DATA
 test: cvtest object
 rootID: 1686

8 Automating Model Coverage Tasks

8-10

 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:47:40
 stopTime: 23-Feb-2021 18:47:40
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 2
 filter:
 simMode: Normal

Execute and plot results for the third test case.

load falling_gain.mat
covSet = setModelParameter(covSet,'CovSaveName','dataObj3');
simOut3 = sim(covSet);
dataObj3

subplot(211)
plot(simOut3.tout,simOut3.yout(:,1),simOut3.tout,simOut3.yout(:,4))
xlabel('Time (sec)'), ylabel('Value'),
title('Gain input and output');
subplot(212)
plot(simOut3.tout,simOut3.yout(:,1)-simOut3.yout(:,4))
xlabel('Time (sec)'), ylabel('Difference'),
title('Difference between the gain input and output');

 Command Line Verification Tutorial

8-11

dataObj3 = ... cvdata
 version: (R2021a)
 id: 1915
 type: TEST_DATA
 test: cvtest object
 rootID: 1686
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:47:42
 stopTime: 23-Feb-2021 18:47:42
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 2
 filter:
 simMode: Normal

Generating a Coverage Report

Assuming that all the tests have passed, produce a combined report from all test cases to verify the
achievement of 100% coverage. Coverage percentages for each test are displayed under the heading
"Model Hierarchy." Although none of the tests individually achieved 100% coverage, in aggregate,
they achieve complete coverage.

cvhtml('combined_ratelim',dataObj1,dataObj2,dataObj3);

8 Automating Model Coverage Tasks

8-12

Saving Coverage Data

Save the collected coverage data in the file "ratelim_testdata.cvt" by using cvsave.

cvsave('ratelim_testdata',dataObj1,dataObj2,dataObj3);

Close the model and exit the coverage environment

close_system('slvnvdemo_ratelim_harness',0);
clear dataObj*

Loading Coverage Data

Restore saved coverage tests from the file "ratelim_testdata.cvt" after opening the model by using
cvload. The data and tests are retrieved in a cell array.

open_system('slvnvdemo_ratelim_harness');
[SavedTests,SavedData] = cvload('ratelim_testdata')

SavedTests =

 1x3 cell array

 {1x1 cvtest} {1x1 cvtest} {1x1 cvtest}

SavedData =

 1x3 cell array

 {1x1 cvdata} {1x1 cvdata} {1x1 cvdata}

Manipulating Coverage Data Objects

Manipulate cvdata objects using the overloaded operators: +, -, and *. The * operator is used to find
the intersection of two coverage data objects, which results in another cvdata object. For example,
the following command produces an HTML report of the common coverage from all three tests.

 Command Line Verification Tutorial

8-13

common = SavedData{1} * SavedData{2} * SavedData{3}
cvhtml('intersection',common)

common = ... cvdata
 version: (R2021a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 219
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:47:37
 stopTime: 23-Feb-2021 18:47:42
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

Extracting Information from Coverage Data Objects

Retrieve decision coverage information from a block path or block handle by using decisioninfo.
The output is a vector with the achieved and total outcomes for a single model object, respectively.

cov = decisioninfo(SavedData{1} + SavedData{2} + SavedData{3}, ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter')

cov =

 6 6

Use the retrieved coverage information to access the percentage coverage.

percentCov = 100 * (cov(1)/cov(2))

percentCov =

 100

When two output arguments are used, decisioninfo returns a structure that captures the decisions
and outcomes within the Simulink block or Stateflow® object.

[blockCov,desc] = decisioninfo(common, ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter/Delta sign')
descDecision = desc.decision
outcome1 = desc.decision.outcome(1)
outcome2 = desc.decision.outcome(2)

blockCov =

 0 2

8 Automating Model Coverage Tasks

8-14

desc =

 struct with fields:

 isFiltered: 0
 justifiedCoverage: 0
 isJustified: 0
 filterRationale: ''
 decision: [1x1 struct]

descDecision =

 struct with fields:

 text: 'Switch trigger'
 filterRationale: ''
 isFiltered: 0
 isJustified: 0
 outcome: [1x2 struct]

outcome1 =

 struct with fields:

 text: 'false (out = in3)'
 executionCount: 0
 executedIn: []
 isFiltered: 0
 isJustified: 0
 filterRationale: ''

outcome2 =

 struct with fields:

 text: 'true (out = in1)'
 executionCount: 0
 executedIn: []
 isFiltered: 0
 isJustified: 0
 filterRationale: ''

 Command Line Verification Tutorial

8-15

Extracting Detailed Information from Coverage Data
This example shows how coverage utility commands can be used to extract information for an
individual subsystem, block, or Stateflow® object from cvdata objects.

Example Model

This example illustrates command line access of coverage data for a small model that contains
aspects of various supported coverage metrics.

Use the following commands to open the model 'slvnvdemo_cv_small_controller' and its subsystem
'Gain.'

open_system('slvnvdemo_cv_small_controller');
open_system('slvnvdemo_cv_small_controller/Gain');

Generate Coverage Data and an HTML Report

Simulate the model using sim. Use a Simulink.SimulationInput object to capture coverage
settings and use it as an input to sim. After the simulation, coverage data will be stored in a cvdata
object.

simIn = Simulink.SimulationInput('slvnvdemo_cv_small_controller');
simIn = simIn.setModelParameter('CovEnable','on');
simIn = simIn.setModelParameter('CovMetricStructuralLevel','MCDC');
simIn = simIn.setModelParameter('CovSaveSingleToWorkspaceVar','on');
simIn = simIn.setModelParameter('CovSaveName','covData');
simIn = simIn.setModelParameter('CovScope','EntireSystem');
simIn = simIn.setModelParameter('CovMetricLookupTable','on');
simIn = simIn.setModelParameter('CovMetricSignalRange','on');
simOut = sim(simIn);

Process the coverage data returned from a cvsim command with the report generation command
cvhtml. The resulting report is a convenient representation of model coverage for the entire model.

cvhtml('tempfile.html',covData);

8 Automating Model Coverage Tasks

8-16

The coverage data is also available in the simulation output object.

simOut

simOut =

 Simulink.SimulationOutput:
 covData: [1x1 cvdata]
 tout: [59x1 double]
 yout: [59x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Extract Decision Coverage Information

Use the decisioninfo command to extract decision coverage information for individual Simulink
blocks or Stateflow objects.

The following command extracts a coverage array for the entire model. The first element is the
number of coverage objective outcomes satisfied for the model; the second element is the total
number of coverage objective outcomes for the model.

cov = decisioninfo(covData,'slvnvdemo_cv_small_controller')
percent = 100*cov(1)/cov(2)

cov =

 4 6

percent =

 66.6667

Retrieve coverage information for the 'Saturation' block using the full path to that block. Provide a
second return argument for textual descriptions of the coverage objective outcomes within that block.

[blkCov, description] = decisioninfo(covData,'slvnvdemo_cv_small_controller/Saturation')

decision1 = description.decision(1).text
out_1a = description.decision(1).outcome(1).text
count_1a = description.decision(1).outcome(1).executionCount
out_1b = description.decision(1).outcome(2).text
count_1b = description.decision(1).outcome(2).executionCount

blkCov =

 3 4

description =

 Extracting Detailed Information from Coverage Data

8-17

 struct with fields:

 isFiltered: 0
 justifiedCoverage: 0
 isJustified: 0
 filterRationale: ''
 decision: [1x2 struct]

decision1 =

 'U > LL'

out_1a =

 'false'

count_1a =

 0

out_1b =

 'true'

count_1b =

 6

Quantitative coverage information is available for every outcome in the hierarchy that contains or has
coverage objective outcomes. Textual descriptions are generated only for objects that have coverage
objective outcomes themselves. For example, invoke decisioninfo for the virtual subsystem Gain,
and the description return value is empty.

[blkCov, description] = decisioninfo(covData,'slvnvdemo_cv_small_controller/Gain')

blkCov =

 1 2

description =

 struct with fields:

 isFiltered: 0
 justifiedCoverage: 0
 isJustified: 0
 filterRationale: ''

8 Automating Model Coverage Tasks

8-18

In some cases an object has internal coverage objectives but also contains descendants with
additional coverage objectives. Coverage information normally includes all the descendants unless a
third argument for ignoring descendants is set to 1.

subsysOnlycov = decisioninfo(covData,'slvnvdemo_cv_small_controller/Gain',1)

subsysOnlycov =

 []

The decisioninfo command also works with block handles, Stateflow IDs, and Stateflow API
objects.

blkHandle = get_param('slvnvdemo_cv_small_controller/Saturation','Handle')
blkCov = decisioninfo(covData,blkHandle)

blkHandle =

 31.0076

blkCov =

 3 4

If an object has no decision coverage, the command returns empty outputs.

missingBlkCov = decisioninfo(covData,'slvnvdemo_cv_small_controller/Sine1')

missingBlkCov =

 []

Extract Condition Coverage Information

Condition coverage indicates if the logical inputs to Boolean expressions have been evaluated to both
true and false. In Simulink, conditions are the inputs to logical operations.

The conditioninfo command for extracting condition coverage information is very similar to the
decisioninfo command. It normally returns information about an object and all its descendants,
but can take a third argument that indicates if descendants should be ignored. It can also return a
second output containing descriptions of each condition.

cov = conditioninfo(covData,'slvnvdemo_cv_small_controller/Gain/Logic')
[cov, desc] = conditioninfo(covData,'slvnvdemo_cv_small_controller/Gain/Logic');
desc.condition(1)
desc.condition(2)

cov =

 2 4

 Extracting Detailed Information from Coverage Data

8-19

ans =

 struct with fields:

 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 text: 'port1'
 trueCnts: 59
 falseCnts: 0
 trueOutcomeFilter: [1x1 struct]
 falseOutcomeFilter: [1x1 struct]
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 text: 'port2'
 trueCnts: 0
 falseCnts: 59
 trueOutcomeFilter: [1x1 struct]
 falseOutcomeFilter: [1x1 struct]
 trueExecutedIn: []
 falseExecutedIn: []

Extract Modified Condition/Decision Coverage Information

Modified Condition/Decision Coverage (MCDC) is satisfied for a condition within a Boolean
expression if there are two evaluations of the expression, representing an independence pair, which
illustrate that the value of the condition independently affects the outcome of the entire expression.
That is to say, for these evaluations, toggling the value of the condition would cause the expression
outcome to toggle as well.

In this example, the logical AND block is analyzed for MCDC and this information can be extracted
using the mcdcinfo command. This command uses the same syntax as conditioninfo and
decisioninfo commands.

[cov, desc] = mcdcinfo(covData,'slvnvdemo_cv_small_controller/Gain/Logic')
desc.condition(1)
desc.condition(2)

cov =

 0 2

desc =

8 Automating Model Coverage Tasks

8-20

 struct with fields:

 text: 'Output'
 condition: [1x2 struct]
 isFiltered: 0
 filterRationale: ''
 justifiedCoverage: 0

ans =

 struct with fields:

 text: 'port1'
 achieved: 0
 trueRslt: '(TT)'
 falseRslt: '(FT)'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 text: 'port2'
 achieved: 0
 trueRslt: '(TT)'
 falseRslt: 'TF'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

Extract Lookup Table Coverage Information

Lookup table coverage records the frequency that lookup occurs for each interpolation interval. Valid
intervals for coverage purposes also include values less than the smallest breakpoint and values
greater than the largest breakpoint. For consistency with the other commands, this information is
returned as a pair of counts with the number of intervals that executed and the total number of
intervals.

A second output argument causes tableinfo to return the execution counts for all interpolation
intervals. If the table has M-by-N output values, execution counts are returned in an M+1-by-N+1
matrix.

A third output argument causes tableinfo to return the counts where the input was exactly equal
to the breakpoint. This is returned in a cell array of vectors, one for each dimension in the table.

[cov,execCnts,brkEq] = tableinfo(covData, 'slvnvdemo_cv_small_controller/Gain/Gain Table')

cov =

 Extracting Detailed Information from Coverage Data

8-21

 23 121

execCnts =

 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 2 12 14 10 2 0 0 0
 0 0 4 12 0 0 0 12 0 0 0
 0 0 22 0 0 0 0 0 12 0 0
 0 0 21 0 0 0 0 0 59 0 0
 0 0 21 0 0 0 0 0 29 0 0
 0 0 7 28 0 0 0 28 6 0 0
 0 0 0 4 22 18 23 5 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0

brkEq =

 1x2 cell array

 {10x1 double} {10x1 double}

Extract Signal Range Information

The signal range metric records the smallest and largest value of Simulink block outputs and
Stateflow data objects. The sigrangeinfo command returns two return arguments for the minimum
and maximum values, respectively.

The sigrangeinfo command works only for leaf blocks that perform a computation; otherwise the
command returns empty arguments.

[sigMin, sigMax] = sigrangeinfo(covData,'slvnvdemo_cv_small_controller/Gain/Gain Table') % Leaf
[sigMin, sigMax] = sigrangeinfo(covData,'slvnvdemo_cv_small_controller/Gain') % Nonleaf

sigMin =

 3.3656

sigMax =

 7.6120

sigMin =

 []

sigMax =

8 Automating Model Coverage Tasks

8-22

 []

 Extracting Detailed Information from Coverage Data

8-23

Operations on Coverage Data
This example shows how to use the overloaded operators +, *, and - to combine coverage results into
a union, intersection, or set difference of results.

Example Model

Open a simple model with two mutually-exclusive enabled subsystems.

open_system('slvnvdemo_cv_mutual_exclusion')

Use the commands cvtest and cvsim to start simulation. Initially, the value of the Constant block is
0, which forces Subsystem 2 to execute.

test1 = cvtest('slvnvdemo_cv_mutual_exclusion');
data1 = cvsim(test1)

data1 = ... cvdata
 version: (R2021a)
 id: 709
 type: TEST_DATA
 test: cvtest object
 rootID: 711
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:52:12
 stopTime: 23-Feb-2021 18:52:12
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 10
 filter:
 simMode: Normal

The following commands change the value of the Constant block to 1 before running the second
simulation. This forces Subsystem 1 to execute.

8 Automating Model Coverage Tasks

8-24

set_param('slvnvdemo_cv_mutual_exclusion/Constant','Value','1');
test2 = cvtest('slvnvdemo_cv_mutual_exclusion');
data2 = cvsim(test2)

data2 = ... cvdata
 version: (R2021a)
 id: 764
 type: TEST_DATA
 test: cvtest object
 rootID: 711
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:52:13
 stopTime: 23-Feb-2021 18:52:13
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 10
 filter:
 simMode: Normal

We use the decisioninfo command to extract the decision coverage from each test and list it as a
percentage.

Note: While both tests have 50% decision coverage, whether or not they cover the same 50% is
unknown.

cov1 = decisioninfo(data1,'slvnvdemo_cv_mutual_exclusion');
percent1 = 100*(cov1(1)/cov1(2))

cov2 = decisioninfo(data2,'slvnvdemo_cv_mutual_exclusion');
percent2 = 100*(cov2(1)/cov2(2))

percent1 =

 50

percent2 =

 50

Finding the Union of Coverage

Use the + operator to derive a third cvdata object representing the union of data1 and data2 cvdata
objects.

Note: New cvdata objects created from combinations of other simulation results are marked with the
type property set as DERIVED_DATA.

dataUnion = data1 + data2

dataUnion = ... cvdata

 Operations on Coverage Data

8-25

 version: (R2021a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 711
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:52:12
 stopTime: 23-Feb-2021 18:52:13
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

Notice that the union of the coverage is 100% because there is no overlap in the coverage between
the two sets.

covU = decisioninfo(dataUnion,'slvnvdemo_cv_mutual_exclusion');
percentU = 100*(covU(1)/covU(2))

percentU =

 100

Finding the Intersection of Coverage

Confirm that the coverage does not overlap between the two tests by intersecting data1 and data2
with the * operator. As expected, there is 0% decision coverage in the intersection.

dataIntersection = data1 * data2

covI = decisioninfo(dataIntersection,'slvnvdemo_cv_mutual_exclusion');
percentI = 100*(covI(1)/covI(2))

dataIntersection = ... cvdata
 version: (R2021a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 711
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:52:12
 stopTime: 23-Feb-2021 18:52:13
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

percentI =

 0

8 Automating Model Coverage Tasks

8-26

Using Derived Coverage Data Objects

Derived cvdata objects can be used in all reporting and analysis commands, and as inputs to
subsequent operations. As an example, generate a coverage report from the derived dataIntersection
object.

cvhtml('intersect_cov', dataIntersection);

% Input to another operation
newUnion = dataUnion + dataIntersection

newUnion = ... cvdata
 version: (R2021a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 711
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:52:12
 stopTime: 23-Feb-2021 18:52:13
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

 Operations on Coverage Data

8-27

8 Automating Model Coverage Tasks

8-28

Computing the Coverage (set) Difference

The - operator is used to form a cvdata object that represents the set difference between left and
right operands. The result of the operation contains the coverage points that are satisfied in the left
operand but not satisfied in the right operand. This operation is useful for determining how much
additional coverage is attributed to a particular test.

In the following example, the difference between the union of the first and second test coverage and
the first test coverage should indicate how much additional coverage the second test provided. As
already shown, since none of the decision coverage points overlapped, the new decision coverage
from test 2 is 50%.

newCov2 = dataUnion - data1

covN = decisioninfo(newCov2,'slvnvdemo_cv_mutual_exclusion');
percentN = 100*(covN(1)/covN(2))

newCov2 = ... cvdata
 version: (R2021a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 711
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 23-Feb-2021 18:52:12
 stopTime: 23-Feb-2021 18:52:13
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

percentN =

 50

 Operations on Coverage Data

8-29

Record Coverage in Parallel Simulations by Using Parsim
This example shows how to record coverage in multiple parallel Simulink® simulations
corresponding to different test cases by using SimulationInput objects and the parsim command. If
Parallel Computing Toolbox is installed on your system, the parsim command runs simulations in
parallel. Otherwise, the simulations are run in serial.

Model Overview

The slvnvdemo_powerwindow_parsim model contains a power window controller and a low-order
plant model. The component slvnvdemo_powerwindow_parsim/
power_window_control_system/control is a Model block that references the model
slvnvdemo_powerwindow_controller, which implements the controller with a Stateflow® chart.

mdl = 'slvnvdemo_powerwindow_parsim';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

Set Up Data for Multiple Simulations

Determine the number of test cases in the Signal Editor block by using the NumberOfScenarios
parameter. The number of test cases determines the number of iterations to run.

8 Automating Model Coverage Tasks

8-30

sigEditBlk = [mdl '/Input'];
numCases = str2double(get_param(sigEditBlk,'NumberOfScenarios'));

Create an array of Simulink.SimulationInput objects to define the set of simulations to run.
Each SimulationInput object corresponds to one simulation and is stored in array simIn. For each
simulation, set these parameters:

• ActiveScenario to indicate which scenario of the Signal Editor block to execute
• CovEnable to turn on coverage analysis
• CovSaveSingleToWokspaceVar to save the coverage results to a workspace variable
• CovSaveName to specify the name of the variable.

for idx = numCases:-1:1
 simIn(idx) = Simulink.SimulationInput(mdl);
 simIn(idx) = setBlockParameter(simIn(idx), sigEditBlk, 'ActiveScenario', idx);
 simIn(idx) = setModelParameter(simIn(idx), 'CovEnable', 'on');
 simIn(idx) = setModelParameter(simIn(idx), 'CovSaveSingleToWorkspaceVar', 'on');
 simIn(idx) = setModelParameter(simIn(idx), 'CovSaveName', 'covdata');
end

Run Simulations in Parallel by Using Parsim

Use the parsim function to execute the simulations in parallel. Pass the array of SimulationInput
objects, simIn, into the parsim function as the first argument. Set the ShowProgress option to on
to display the progress of the simulations in the MATLAB Command Window. The output from the
parsim command is simOut, an array of Simulink.SimulationOutput objects.

simOut = parsim(simIn, 'ShowProgress', 'on');

[23-Feb-2021 18:52:20] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).
[23-Feb-2021 18:54:40] Starting Simulink on parallel workers...
[23-Feb-2021 18:55:06] Configuring simulation cache folder on parallel workers...
[23-Feb-2021 18:55:08] Loading model on parallel workers...
[23-Feb-2021 18:55:23] Running simulations...
[23-Feb-2021 18:56:31] Completed 1 of 2 simulation runs
[23-Feb-2021 18:56:31] Completed 2 of 2 simulation runs
[23-Feb-2021 18:56:31] Cleaning up parallel workers...

Each Simulink.SimulationInput object contains logged coverage results stored as
cv.cvdatagroup objects. These coverage results are stored in a field named covdata, as
previously specified by the CovSaveName parameter. Using parsim to run multiple simulations
means that errors are captured so that subsequent simulations can continue to run. Any errors are
recorded in the ErrorMessage property of the SimulationOutput object.

covdata references a file containing the coverage results. The coverage data from the referenced
file is automatically loaded into memory when covdata is used by a coverage function.

simOut(1).covdata

ans = ... cvdata
 file: C:\TEMP\Bdoc21a_1606923_5032\ib8F3FCD\13\tpa9d68794\ex16619798\slcov_output\slvnvdemo_powerwindow_parsim\slvnvdemo_powerwindow_parsim_cvdata_1.cvt
 date: 23-Feb-2021 18:56:30

 Record Coverage in Parallel Simulations by Using Parsim

8-31

Compute Cumulative Coverage

Obtain the coverage data from each element of simOut and cumulate the results.

coverageData = simOut(1).covdata;
for i = 2 : numCases
 coverageData = coverageData + simOut(i).covdata;
end

View the cumulative coverage results on the model by using coverage highlighting.

cvmodelview(coverageData);
open_system('slvnvdemo_powerwindow_parsim/power_window_control_system');

Generate a cumulative coverage report.

cvhtml('cummulative_cov_report.html', coverageData);

8 Automating Model Coverage Tasks

8-32

Filter Coverage Results Using a Script
This example shows how to programmatically filter objects and outcomes from coverage results.

Open the Model and Enable Coverage Analysis

First, load the model into memory.

modelName = 'slvnvdemo_covfilt';
load_system(modelName);

Configure the coverage settings for the model by using a Simulink.SimulationInput object.

simIn = Simulink.SimulationInput(modelName);
simIn = simIn.setModelParameter('CovEnable','on');
simIn = simIn.setModelParameter('CovMetricStructuralLevel','MCDC');
simIn = simIn.setModelParameter('StopTime','20');
simIn = simIn.setModelParameter('CovSaveSingleToWorkspaceVar','on');
simIn = simIn.setModelParameter('CovSaveName','covData');

For a list of coverage parameters, see “Coverage Settings”.

Simulate the model using the SimulationInput object as the input.

simOut = sim(simIn);

View Decision Coverage Results

View the coverage results before applying a filter. You can access the decision coverage results using
decisioninfo.

saturationInitial = decisioninfo(covData,'slvnvdemo_covfilt/Saturation');
percentSaturationCov = 100 * saturationInitial(1)/saturationInitial(2)

percentSaturationCov =

 50

The Saturation block has 50% decision coverage. If you do not intend for this block to be satisfied,
you can filter a missing objective outcome so that it is no longer reported as missing coverage. First,
you need a selector for the unsatisfied objective outcome that you want to filter.

Create a Selector

You can directly create a selector using the appropriate constructor. In this case, you would use
slcoverage.MetricSelector.

Because the objective being justified is a decision outcome, the first input to the metric selector
constructor is slcoverage.MetricSelectorType.DecisionOutcome. The second input is the
block handle. The last two are the index of the objective to justify and the index of the outcome of
that objective, respectively. Because the input > lower limit decision objective is the first
objective for the Saturation block, its objective index is 1. Because the false outcome of this
objective is the first outcome, its outcome index is also 1.

metricSel = slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome,...
 'slvnvdemo_covfilt/Saturation',1,1)

 Filter Coverage Results Using a Script

8-33

metricSel =

 MetricSelector with properties:

 ObjectiveIndex: 1
 OutcomeIndex: 1
 Description: 'N/A'
 Type: DecisionOutcome
 Id: 'slvnvdemo_covfilt:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome, 'slvnvdemo_covfilt:5', 1, 1)'

You can also use slcoverage.Selector.allSelectors to see the available selectors for the
Saturation block.

saturationAllSels = slcoverage.Selector.allSelectors('slvnvdemo_covfilt/Saturation')

saturationAllSels =

 1x6 heterogeneous Selector (BlockSelector, MetricSelector) array with properties:

 Description
 Type
 Id
 ConstructorCode

You can also see the objective and outcome indices by using the allSelectors method. Use the
Description name-value pair to search for F.

falseSelectors = slcoverage.Selector.allSelectors('slvnvdemo_covfilt/Saturation',...
 'Description','F')

falseSelectors =

 1x2 MetricSelector array with properties:

 ObjectiveIndex
 OutcomeIndex
 Description
 Type
 Id
 ConstructorCode

There are two false case selectors in the Saturation block. The first selector is F outcome of
input > lower limit.

falseSel = falseSelectors(1)

falseSel =

 MetricSelector with properties:

 ObjectiveIndex: 1

8 Automating Model Coverage Tasks

8-34

 OutcomeIndex: 1
 Description: 'F outcome of input > lower limit in Saturate block "Saturation"'
 Type: DecisionOutcome
 Id: 'slvnvdemo_covfilt:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome, 'slvnvdemo_covfilt:5', 1, 1)'

The falseSel selector is the same one we constructed manually using
slcoverage.MetricSelector. The objective and outcome indices are properties of the resulting
selector object.

Create a Justification Rule

Create a filter object by using slcoverage.Filter. You can set the filter file name and filter
description by using the methods setFilterName and setFilterDescription, respectively.

filt = slcoverage.Filter;
setFilterName(filt,'slcoverage_filter');
setFilterDescription(filt,'Example Filter');

Create a filter rule by using slcoverage.FilterRule. The first input to FilterRule is the
selector for the block or outcome you want to filter. This can be a selector you create, or one you
retrieve from allSelectors.

The second input is the rationale for filtering the outcome or block. This is specified as a character
array.

The third input is the filter mode you want to use. The two coverage filter modes are justify and
exclude. Use justify mode to filter individual coverage objective outcomes such as F outcome of
input > lower limit. Use exclude mode to filter entire model elements or blocks, which means
that the block and its descendants, if applicable, are ignored. In this example, use justify mode to
specify that you want to filter a specific outcome.

rule = slcoverage.FilterRule(metricSel,'rate > 0',slcoverage.FilterMode.Justify);

Add the rule to the filter using addRule.

filt.addRule(rule);

Save the filter to a filter file using the save method. Then apply the filter file to the cvdata object by
assigning the filter property to the new filter file.

filt.save('covfilter');
covData.filter = 'covfilter';

Re-generate the coverage results for the Saturation block using the filtered cvdata object.

filteredSaturation = decisioninfo(covData,'slvnvdemo_covfilt/Saturation');
percentSaturationFilt = 100 * filteredSaturation(1)/filteredSaturation(2)

percentSaturationFilt =

 75

Decision coverage for the Saturation block is now 75%.

 Filter Coverage Results Using a Script

8-35

Justify an MCDC Objective in a Stateflow® Chart

You can apply the same workflow to justify a specific Stateflow action. In this example, we want to
justify the tick MCDC objective that is part of the after(4, tick) transition.

First, get the Stateflow root object by using sfroot (Stateflow).

chartID = sfroot;

Get the 'after(4, tick)' transition ID by using the find (Stateflow) method. You can use find
to search for transitions by using the '-isa' flag with 'Stateflow.Transition'. You can further
specify the exact transition by using searching for the label string using additional inputs.

transID = chartID.find('-isa','Stateflow.Transition','LabelString','after(4, tick)');

Get the Simulink ID of the chart by using Simulink.ID.getSID.

transSID = Simulink.ID.getSID(transID);

Get the selector for the MCDC objective outcome that we want to filter by using allSelectors. Pass
the Simulink ID of the Stateflow transition as the first input. Because we want to justify a tick
outcome, search for "tick" in the description.

sfSelectors = slcoverage.Selector.allSelectors(transSID,'Description','"tick"')

sfSelectors =

 1x3 MetricSelector array with properties:

 ObjectiveIndex
 OutcomeIndex
 Description
 Type
 Id
 ConstructorCode

allSelectors returns three possible selectors. The transition we want to filter is the third selector
returned.

sfSel = sfSelectors(3)

sfSel =

 MetricSelector with properties:

 ObjectiveIndex: 1
 OutcomeIndex: 1
 Description: 'Condition 1, "tick" outcome of Transition trigger expression in Transition "after(4, tick)" from "Clipped" to "Full"'
 Type: MCDCOutcome
 Id: 'slvnvdemo_covfilt:6:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.MCDCOutcome, 'slvnvdemo_covfilt:6:5', 1, 1)'

Create the rule, add it to the filter, and save it. The filter file is already applied to the cvdata object.

8 Automating Model Coverage Tasks

8-36

rule2 = slcoverage.FilterRule(sfSel,'tick never false');
filt.addRule(rule2);
filt.save('covfilter');

For more information about the stateflow programmatic API, see “Overview of the Stateflow API”
(Stateflow).

Exclude a Block Using Block Selector

You can filter a block using slcoverage.BlockSelector. In this case, we want to exclude the
Switchable config subsystem, so we use the SubsystemAllContent selector type and the
slcoverage.FilterMode.Exclude filter mode.

subsysSel = slcoverage.BlockSelector(...
 slcoverage.BlockSelectorType.SubsystemAllContent,...
 'slvnvdemo_covfilt/Switchable config');

Create the filter rule by passing the selector, rationale, and the exclude filter mode as inputs.

rule3 = slcoverage.FilterRule(subsysSel,...
 'Unused configuration',...
 slcoverage.FilterMode.Exclude);

Add the rule to the filter and save it.

filt.addRule(rule3);
filt.save('covfilter');

Finally, you can view the coverage report by using cvhtml. The Objects Filtered from Coverage
Analysis section shows a summary of the filtered model objects and the rationales. The 'sRT=0' flag
can be used to generate the coverage report but not open the report automatically.

cvhtml('filteredCovReport',covData,'-sRT=0');

See Also
allSelectors | cvdata Properties | cvhtml | decisioninfo | slcoverage.BlockSelector |
slcoverage.FilterRule | slcoverage.MetricSelector | slcoverage.Selector

 Filter Coverage Results Using a Script

8-37

More About
• “Retrieve Coverage Details from Results” on page 8-4
• “Creating and Using Coverage Filters” on page 7-11
• “Stateflow Programmatic Interface” (Stateflow)

8 Automating Model Coverage Tasks

8-38

Component Verification

• “Component Verification” on page 9-2
• “Fix Requirements-Based Testing Issues” on page 9-6

9

Component Verification

In this section...
“Simulink Coverage Tools for Component Verification” on page 9-2
“Workflow for Component Verification” on page 9-2
“Verify a Component Independently of the Container Model” on page 9-4
“Verify a Model Block in the Context of the Container Model” on page 9-4

Using component verification, you can test a design component in your model with one of these
approaches:

• System analysis. Within the context of the model that contains the component, you use systematic
simulation of closed-loop controllers to verify components within a control system model. You can
then test the control algorithms with your model.

• Component analysis. As standalone components, for a high level of confidence in the component
algorithm, verify the component in isolation from the rest of the system.

Verifying standalone components provides several advantages:

• You can use the analysis to focus on portions of the design that you cannot test because of the
physical limitations of the system being controlled.

• For open-loop simulations, you can test the plant model without feedback control.
• You can use this approach when the model is not yet available or when you need to simulate a

control system model in accelerated mode for performance reasons.

Simulink Coverage Tools for Component Verification
By isolating a component to verify and by using tools that the Simulink Coverage software provides,
you create test cases to expand the scope of the testing for large models. You can:

• Achieve 100% model coverage — If certain model components do not record 100% coverage, the
top-level model cannot achieve 100% coverage. By verifying these components individually, you
can create test cases that fully specify the component interface, allowing the component to record
100% coverage.

• Debug the component — To verify that each model component satisfies the specified design
requirements, you can create test cases that verify that specific components perform as they were
designed to perform.

• Test the robustness of the component — To verify that a component handles unexpected inputs
and calculations properly, you can create test cases that generate data. Then, test the error-
handling capabilities in the component.

Workflow for Component Verification
This graphic illustrates two approaches for component verification.

9 Component Verification

9-2

1 Choose your approach for component verification:

• For closed-loop simulations, verify a component within the context of its container model by
logging the signals to that component and storing them in a data file. If those signals do not
constitute a complete test suite, generate a harness model and add or modify the test cases in
the Signal Builder.

• For open-loop simulations, verify a component independently of the container model by
extracting the component from its container model and creating a harness model for the
extracted component. Add or modify test cases in the Signal Builder and log the signals to the
component in the harness model.

2 Prepare component for verification.
3 Create and log test cases. You can also merge the test case data into a single data file.

The data file contains the test case data for simulating the component. If you cannot achieve the
expected results with a certain set of test cases, add new test cases or modify existing test cases
in the data file. Merge the test cases into a single data file.

Continue adding or modifying test cases until you achieve a test suite that satisfies your analysis
goals.

4 Execute the test cases in software-in-the-loop or processor-in-the-loop mode.
5 After you have a complete test suite, you can:

• Simulate the model and execute the test cases to:

• Record coverage.
• Record output values to make sure that you get the expected results.

• Invoke the Code Generation Verification (CGV) API to execute the generated code for the
model that contains the component in simulation, software-in-the-loop (SIL), or processor-in-
the-loop (PIL) mode.

 Component Verification

9-3

Note To execute a model in different modes of execution, you use the CGV API to verify the
numerical equivalence of results. See “Programmatic Code Generation Verification”
(Embedded Coder).

Verify a Component Independently of the Container Model
Use component analysis to verify:

• Model blocks
• Atomic subsystems
• Stateflow atomic subcharts

1 Depending on the type of component, take one of the following actions:

• Model blocks — Open the referenced model.
• Atomic subsystems — Extract the contents of the subsystem into its own Simulink model.
• Atomic subcharts — Extract the contents of the Stateflow atomic subchart into its own

Simulink model.
2 Create a harness model for:

• The referenced model
• The extracted model that contains the contents of the atomic subsystem or atomic subchart

3 Add or modify test cases in the Signal Builder of the harness model.
4 Log the input signals from the Signal Builder to the test unit.
5 Repeat steps 3 and 4 until you are satisfied with the test suite.
6 Merge the test case data into a single file.
7 Depending on your goals, take one of these actions:

• Execute the test cases to:

• Record coverage.
• Record output values and make sure that they equal the expected values.

• Invoke the Code Generation Verification (CGV) API to execute the test cases in software-in-
the-loop (SIL) or processor-in-the-loop (PIL) mode on the generated code for the model that
contains the component.

If the test cases do not achieve the expected results, repeat steps 3 through 5.

Verify a Model Block in the Context of the Container Model
Use system analysis to:

• Verify a Model block in the context of the block’s container model.
• Analyze a closed-loop controller.

1 Log the input signals to the component by simulating the container model or analyze the model
by using the Simulink Design Verifier software.

2 If you want to add test cases to your test suite or modify existing test cases, create a harness
model with the logged signals.

9 Component Verification

9-4

3 Add or modify test cases in the Signal Builder in the harness model.
4 Log the input signals from the Signal Builder to the test unit.
5 Repeat steps 3 and 4 until you are satisfied with the test suite.
6 Merge the test case data into a single file.
7 Depending on your goals, do one of the following:

• Execute the test cases to:

• Record coverage.
• Record output values and make sure that they equal the expected values.

• Invoke the Code Generation Verification (CGV) API to execute the test cases in software-in-
the-loop (SIL) or processor-in-the-loop (PIL) mode on the generated code for the model.

If the test cases do not achieve the expected results, repeat steps 3 through 5.

 Component Verification

9-5

Fix Requirements-Based Testing Issues
This example shows how to address common traceability issues in model requirements and tests by
using the Model Testing Dashboard. The dashboard analyzes the testing artifacts in a project and
reports metric data on quality and completeness measurements such as traceability and coverage,
which reflect guidelines in industry-recognized software development standards, such as ISO 26262
and DO-178C. The dashboard widgets summarize the data so that you can track your requirements-
based testing progress and fix the gaps that the dashboard highlights. You can click the widgets to
open tables with detailed information, where you can find and fix the testing artifacts that do not
meet the corresponding standards.

Collect Metrics for the Testing Artifacts in a Project

The dashboard displays testing data for a model and the artifacts that the model traces to within a
project. For this example, open the project and collect metric data for the artifacts.

1 Open the project. At the command line, type dashboardCCProjectStart.
2 Open the dashboard. On the Project tab, click Model Testing Dashboard.
3 If you have not previously opened the dashboard for the project, the dashboard must identify the

artifacts in the project and trace them to the models. To run the analysis and collect metric
results, click Trace and Collect All.

4 In the Artifacts pane, the dashboard organizes artifacts such as requirements, test cases, and
test results under the models that they trace to. View the metric results for the model
db_DriverSwRequest. In the Artifacts pane, click the name of the model. The dashboard
populates the widgets with data from the most recent metric collection for the model.

9 Component Verification

9-6

Next, use the data in the Artifacts panel and the dashboard widgets to find and address issues in the
requirements and tests for the model.

Link a Requirement to its Implementation in a Model

On the Artifacts panel, the Untraced folder shows artifacts that do not trace to the models in the
project. You can check the artifacts in this folder to see if there are any requirements that should be
implemented by the models but are missing links. For this example, link one of these requirements to
the model block that implements it and update the Artifacts panel to reflect the link.

1 In the Artifacts panel, navigate to the requirement Untraced > Functional Requirements >
db_req_func_spec.slreqx > Switch precedence.

2 Open the requirement in the Requirements Editor. On the Artifacts panel, double-click Switch
precedence. This requirement describes the order in which the cruise control system takes
action if multiple switches are enabled at the same time. Keep the Requirements Editor open
with the requirement selected.

3 Open the model db_Controller. To open the model from the Model Testing Dashboard, in the
Artifacts panel, expand the folder db_Controller > Design and double-click
db_Controller.slx.

 Fix Requirements-Based Testing Issues

9-7

4 The Model block DriverSwRequest references the model db_DriverSwRequest, which
controls the order in which the cruise control system takes action when the switches are enabled.
Link this model block to the requirement. Right-click the model block and select Requirements
> Link to Selection in Requirements Browser.

5 Save the model. On the Simulation tab, click Save.
6 Save the requirements set. In the Requirements Editor, click the Save icon.
7 To update the artifact traceability information, in the Model Testing Dashboard, click Trace

Artifacts.

The Artifacts panel shows the Switch precedence requirement under db_Controller > Functional
Requirements > db_req_func_spec.slreqx. Next, find traceability issues in the artifacts by
collecting metrics in the dashboard.

Address Testing Traceability Issues

Open the dashboard for the component db_DriverSwRequest by clicking the name of the component
in the Artifacts panel. Because you changed the requirements file by adding a link, the dashboard
widgets are highlighted in gray to show that the results might represent stale data. To update the
results for the component, click Collect Results.

The widgets in the Test Case Analysis section of the dashboard show data about the model
requirements, test cases for the model, and links between them. The widgets indicate if there are
gaps in testing and traceability for the implemented requirements.

Link Requirements and Test Cases

In the model db_DriverSwRequest, the Requirements Linked to Tests section shows that some
of the requirements in the model are missing links to test cases. Examine the requirements by
clicking one of the dashboard widgets. Then, use the links in the table to open the artifacts and fix the
traceability issues.

To see detailed information about the unlinked requirements, in the Requirements Linked to Tests
section, click the widget Unlinked. The table shows the requirements that are implemented in the
model, but do not have links to a test case. The table is filtered to show only requirements that are
missing links to test cases. For this example, link a test for the requirement Set Switch
Detection.

9 Component Verification

9-8

1 Open the requirement in the Requirements Editor. In the table, click Set Switch Detection.
2 In the Requirements Editor, examine the details of the requirement. This requirement describes

the behavior of the Set switch when it is pressed. Keep the requirement selected in the
Requirements Editor.

3 Check if there is already a test case for the switch behavior. To return to the metric results, at the
top of the Model Testing Dashboard, click db_DriverSwRequest. The Tests Linked to
Requirements section shows that one test case is not linked to requirements.

4 To see the unlinked test cases, in the Tests Linked to Requirements section, click Unlinked.
5 To open the test in the Test Manager, in the table, click the test case Set button. The test case

verifies the behavior of the Resume switch. If there were not already a test case for the switch,
you would add a test case by using the Test Manager.

6 Link the test case to the requirement. In the Test Manager, for the test case, expand the
Requirements section. Click Add > Link to Selected Requirement. The traceability link
indicates that the test case Set button verifies the requirement Set Switch Detection.

7 The metric results in the dashboard reflect only the saved artifact files. To save the test suite
db_DriverSwRequest_Tests.mldatx, in the Test Browser, right-click
db_DriverSwRequest_Tests and click Save.

8 Save the requirements file db_req_func_spec.slreqx. In the Requirements Editor, click the
Save button.

Next, update the metric data in the dashboard to see the effect of adding the link.

Update Metric Results in the Dashboard

Update the metric results in the Model Testing Dashboard so that they reflect the traceability link
between the requirement and the test case.

1 To analyze the artifact changes in the Model Testing Dashboard, click Trace Artifacts. The
button is enabled when there are changes in the project artifacts that the dashboard has not
analyzed.

 Fix Requirements-Based Testing Issues

9-9

2

At the top of the dashboard, the Stale Metrics icon indicates that at least one
metric widget shows stale data for the model. Widgets that show stale metric data appear
highlighted in grey. To refresh the widgets, re-collect the metric data for the model by clicking
Collect Results.

The Test Case Analysis widgets show that there are 11 remaining unlinked requirements. The Tests
Linked to Requirements section shows that there are no unlinked tests. Typically, before running
the tests, you investigate and address these testing traceability issues by adding tests and linking
them to the requirements. For this example, leave the unlinked artifacts and continue to the next step
of running the tests.

Test the Model and Analyze Failures and Gaps

After you create and link unit tests that verify the requirements, run the tests to check that the
functionality of the model meets the requirements. To see a summary of the test results and coverage
measurements, use the widgets in the Test Result Analysis section of the dashboard. The widgets
highlight testing failures and gaps. Use the metric results for the underlying artifacts to address the
issues.

Perform Unit Testing

Run the test cases for the model by using the Test Manager. Save the results as an artifact in the
project and review them in the Model Testing Dashboard.

1 Open the unit tests for the model in the Test Manager. In the Model Testing Dashboard, in the
Artifacts pane, expand the model db_DriverSwRequest. Expand the Test Cases folder and
double-click the test file db_DriverSwRequest_Tests.mldatx.

2 In the Test Manager, click Run.
3 To use the test results in the Model Testing Dashboard, export the test results and save the file in

the project. On the Tests tab, in the Results section, click Export. Name the results file
Results1.mldatx and save the file under the project root folder.

9 Component Verification

9-10

The Model Testing Dashboard detects that you exported the results and automatically updates the
Artifacts panel to reflect the new results. The widgets in the Test Result Analysis section are
highlighted in grey to indicate that they are showing stale data. To update the data in the dashboard
widgets, click Collect Results.

Address Testing Failures and Gaps

In the model db_DriverSwRequest, the Model Test Status section indicates that one test failed
and one test was disabled during the latest test run. Open the tests and fix these issues.

1 To view the disabled test, in the dashboard, click the Disabled widget. The table shows the
disabled test cases for the model.

2 Open the disabled test in the Test Manager. In the table, click the test Decrement button
hold.

3 Enable the test. In the Test Browser, right-click the test case and click Enabled. Save the test
suite file.

4 To view the failed test, in the dashboard, click the Failed widget.
5 Open the failed test in the Test Manager. In the table, click the test Cancel button.
6 Examine the test failure in the Test Manager. You can determine if you need to update the test or

the model by using the test results and links to the model. For this example, instead of fixing the
failure, continue on to examine test coverage.

Check if the tests that you ran fully exercised the model design by using the coverage metrics. For
this example, the Model Coverage section of the dashboard indicates that some conditions in the
model were not covered. Place your cursor over the bar in the widget to see what percent of

 Fix Requirements-Based Testing Issues

9-11

condition coverage was achieved. For this example, 86.4% of decisions were covered by the tests and
4.55% of the decisions were justified in a coverage filter.

1 View the decision coverage details. Click the Decision bar.
2 In the table, expand the model artifact. The table shows the test case results for the model and

the results file that contains them. Open the results file Results1.mldatx in the Test Manager.
3 To see detailed coverage results, open the model in the Coverage perspective. In the Test

Manager, in the Aggregated Coverage Results section, in the Analyzed Model column, click
db_DriverSwRequest.

4 Coverage highlighting on the model shows the points that were not covered by the test cases. For
a point that is not covered, add a test that covers it. Find the requirement that is implemented by
the model element or, if there is none, add a requirement for it. Link the new test case to the
requirement. If the point should not be covered, justify the missing coverage by using a filter. For
this example, do not fix the missing coverage.

Once you have updated the unit tests to address failures and gaps, run the tests and save the results.
Then examine the results by collecting the metrics in the dashboard.

Iterative Requirements-Based Testing with the Model Testing Dashboard

In a project with many artifacts and traceability connections, you can monitor the status of the design
and testing artifacts whenever there is a change to a file in the project. After you change an artifact,
check if there are downstream testing impacts by updating the tracing data and metric results in the
dashboard. Use the tables to find and fix the affected artifacts. Track your progress by updating the
dashboard widgets until they show that the model testing quality meets the standards for the project.

9 Component Verification

9-12

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 10-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 10-7
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9
• “Analyze Code and Test Software-in-the-Loop” on page 10-12
• “Create Back-to-back Tests Using Enhanced MCDC” on page 10-18
• “Create and Run Back-to-Back Tests using Enhanced MCDC” on page 10-20

10

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Create a copy of the project in a working folder. The project contains data, documents, models,

and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.

10 Verification and Validation

10-2

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

10-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

10 Verification and Validation

10-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

10-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Simulink Requirements)
• “Customize Requirements Traceability Report for Model” (Simulink Requirements)

10 Verification and Validation

10-6

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks®

Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

 Analyze a Model for Standards Compliance and Design Errors

10-7

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.
c To review the configuration parameter settings that violate MAB style guidelines, click on

the Check model diagnostic parameters check. The analysis results appear in the right
pane and include the recommended action.

d Click the parameter hyperlinks, which opens the Configuration Parameters dialog box, and
update the model diagnostic parameters. Save the model.

e To verify that your model passes, rerun the check. Repeat steps c and d, if necessary, to
reach compliance.

f To generate a results report of the Simulink Check checks, select the MAB Checks node,
and then, in the right pane click Generate Report....

Check Model for Design Errors

While in the Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Products > Simulink Design Verifier folder, select Design Error
Detection.

2 If not already checked, click the box beside Design Error Detection. All checks in the folder are
selected.

3 In the right pane, select Show report after run and Run Selected Checks.
4 In the generated report, click a Simulink Design Verifier Results Summaryhyperlink. The

dialog box provides tools to help you diagnose errors and warnings in your model.

a Review the analysis results on the model. Click Highlight analysis results on model. Click
the Compute target speed subsystem, outlined in red. The Simulink Design Verifier
Results Inspector window provides derived ranges that can help you understand the source
of an error by identifying the possible signal values.

b Review the harness model or create one if it does not already exist.
c View tests and export test cases.
d Review the analysis report. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” (Simulink Check)
• “Collect Model Metrics Using the Model Advisor” (Simulink Check)
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

10 Verification and Validation

10-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager. At the command line, enter:

 Perform Functional Testing and Analyze Test Coverage

10-9

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:

• Brake pedal is pressed
• Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

• Select Record coverage for referenced models
• Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.

The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

• Select Decision, Condition, and MCDC.
3 To run the tests, on the Test Manager toolstrip, click Run.
4 When the test finishes select the Results in the Test Manager. The aggregated coverage results

show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

10 Verification and Validation

10-10

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output to Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

 Perform Functional Testing and Analyze Test Coverage

10-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
Analyze code to detect errors, check standards compliance, and evaluate key metrics such as length
and cyclomatic complexity. Typically for handwritten code, you check for run-time errors with static
code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, refine the code and add tests. For generated code, demonstrate that
code execution produces equivalent results to the model by using the same test cases and baseline
results. Compare the code coverage to the model coverage. Based on test results, add tests and
modify the model to regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics, code defects, and MISRA compliance. To produce
more MISRA compliant code from your model, you use the code generation and Model Advisor. To
check whether the code is MISRA compliant, you use the Polyspace MISRA C:2012 checker and
report generation capabilities. For this example, you use the model
simulinkCruiseErrorAndStandardsExample. To open the model:

1 Open the project.

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

10 Verification and Validation

10-12

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate code more
compliant with MISRA C and more compatible with Polyspace. This example shows how to use the
Code Generation Advisor to check your model before generating code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized . The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

 Analyze Code and Test Software-in-the-Loop

10-13

The Code Generation Advisor checks whether there are any blocks or configuration settings that
are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this
model, the check for incompatible blocks passes, but there are some configuration settings that
are incompatible with MISRA compliance and Polyspace checking.

4 Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code that is
more compliant with MISRA C and more compatible with Polyspace. This example shows you how to
use the Model Advisor to check your model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, right-click Compute target speed and select Polyspace > Options.
4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose more

advanced Polyspace analysis options in the Polyspace configuration window.

10 Verification and Validation

10-14

5 On the same pane, select Calculate Code Metrics (Polyspace Bug Finder). This option turns on
code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and defect
checks. You can see the progress of the analysis in the MATLAB Command Window. Once the
analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment shows you the
results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify

 Analyze Code and Test Software-in-the-Loop

10-15

every result. But, because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from (Polyspace Bug Finder) option to Project configuration. This option

allows you to choose a subset of MISRA rules in the Polyspace configuration.
4 Click the Configure button.
5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics pane, select

the check box Check MISRA C:2012 (Polyspace Bug Finder) and from the drop-down list, select
single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules that are applicable
to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, only two violations were
found.

10 Verification and Validation

10-16

When this model is integrated with its parent model, you can add the rest of the MISRA C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. This section shows you how to generate a report after the analysis. If you want to
generate a report every time you run an analysis, see Generate report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results” (Simulink Test)

 Analyze Code and Test Software-in-the-Loop

10-17

Create Back-to-back Tests Using Enhanced MCDC
Back-to-back tests, or equivalence tests, compare the results of normal simulations with the
generated code results from software-in-the-loop (SIL), processor-in-the-loop (PIL), or hardware-in-
the-loop (HIL) simulations. You can generate back-to-back tests in Simulink Test that use Enhanced
MCDC.

Set Up Test Inputs and Verification Strategy
If you want to test a component under test or subsystems in Simulink Test, you can use the Create
Test for Component wizard by selecting New > Create Test for Model Component Simulink Test
Test Manager, Use Design Verifier to generate test input scenarios. For detailed information, see
“Generate Tests and Test Harnesses for a Component or Model” (Simulink Test).

To compare the results of running the component in two different simulation modes, select Perform
back-to-back testing on the Verification Strategy tab of the wizard. For SIL testing an atomic
subsystem or a reusable library subsystem, the subsystem or library that contains the subsystem
must already have generated code. See “Enhanced MCDC Coverage in Simulink Design Verifier”
(Simulink Design Verifier) for more information.

10 Verification and Validation

10-18

If, under Perform back-to-back testingyou select Software-in-the-Loop or Processor-in-
the-Loop for Simulation2, the Set Model Coverage Objective as Enhanced MCDC option
appears. Enhanced MCDC extends decision coverage by generating test cases that avoid masking
effects from downstream blocks.

See Also

Related Examples
• “Create and Run Back-to-Back Tests using Enhanced MCDC” (Simulink Design Verifier)
• “Enhanced MCDC Coverage in Simulink Design Verifier” (Simulink Design Verifier)
• “Generate Tests and Test Harnesses for a Component or Model” (Simulink Test)

 Create Back-to-back Tests Using Enhanced MCDC

10-19

Create and Run Back-to-Back Tests using Enhanced MCDC
This example shows you how to create and run a back-to-back test using enhanced MCDC. Enhanced
MCDC analyzes the detectability of each objective in the model and generates non-masking test cases
for each objective. For more information, see “Enhanced MCDC Coverage in Simulink Design
Verifier” (Simulink Design Verifier).

Back-to-back tests in Simulink® Test™ compare the results of normal simulations with the generated
code results from software-in-the-loop, processor-in-the-loop, or hardware-in-the-loop simulations.

Section 1: Prepare the Model

1. Open the model:

model = ('sldvSliceCruiseControl');
open_system(model);

2. Prepare the model for code generation and logging.

set_param(model, 'ProdHWDeviceType', 'Intel->x86-64 (Linux 64)');
set_param(model, 'ProdLongLongMode', 'on');

10 Verification and Validation

10-20

set_param(model, 'SaveOutput', 'on');
set_param(model, 'SignalLogging', 'on');
set_param(model, 'SaveFormat', 'Dataset');

Note: You can also optionally mark internal signals in the model as test-pointed logged signals (for
example, sldvSliceCruiseControl/CruiseControlMode/opMode/Switch,) so that these
signals are prioritized as detection sites during the enhanced MCDC analysis. See, “Configure
Detection Sites using Test-pointed Logged Signals” (Simulink Design Verifier).

3. Generate the code.

In the Apps tab, click Embedded Coder, and then click Generate Code.

Embedded coder generates the code generation report for model. Close the generated report window.
Simulink Design Verifier uses information on logged signals from the generated code to configure the
detection sites for enhanced MCDC detection sites. If you do not generate the code, Simulink Design
Verifier uses the information on test-pointed logged signals from the model to configure the detection
sites for enhanced MCDC.

Section 2: Create Back-to-Back Tests Using Enhanced MCDC

Follow these steps to create back-to-back tests in the Simulink Test Test Manager:

1. To open the Simulink Test tab, in the Apps tab, in the Model Verification, Validation, and Test
section, click Simulink Test.

2. To open the Test Manager, in the Tests tab, click Simulink Test Manager.

3. Click New > Test for Model Component. The Create Test for Model Component wizard opens.

4. To specify the Top Model to test, fill the fields by clicking the Use currently selected model
component button next to the Top Model field.

5. Click Next to specify how to use the Simulink Design Verifier to generate test inputs. Select Use
Design Verifier to generate test input scenarios. This option runs the model and creates inputs
using Simulink Design Verifier.

 Create and Run Back-to-Back Tests using Enhanced MCDC

10-21

6. Click Next to select the testing method. Select Perform back-to-back testing. For Simulation1,
select Normal. For Simulation2, select Software-in-the-Loop (SIL). Select Set Model
coverage objectives as Enhanced MCDC.

10 Verification and Validation

10-22

7. Click Next to specify the input source, format, and where to save the test data and generated tests.
For Specify the file format, select MAT. For Specify the location to save test data, use the
default location name.

8. Click Done. Simulink Test creates the test cases and closes the wizard.

Section 3: Run Back-to-Back Tests

To run the back-to-back test, click Run in Simulink Test Manager.

Clean Up

To complete the example, close the model.

bdclose(model);

Related Topics

• “Create Back-to-back Tests Using Enhanced MCDC” (Simulink Design Verifier)
• “Generate Tests and Test Harnesses for a Component or Model” (Simulink Test)

 Create and Run Back-to-Back Tests using Enhanced MCDC

10-23

	Model Coverage Definition
	Model Coverage
	Types of Model Coverage
	Execution Coverage (EC)
	Decision Coverage (DC)
	Condition Coverage (CC)
	Modified Condition/Decision Coverage (MCDC)
	Cyclomatic Complexity
	Lookup Table Coverage
	Signal Range Coverage
	Signal Size Coverage
	Objectives and Constraints Coverage
	Saturate on Integer Overflow Coverage
	Relational Boundary Coverage

	Simulink Optimizations and Model Coverage
	Inlined Parameters
	Block Reduction
	Conditional Input Branch Execution

	Model Objects That Receive Model Coverage
	Model Objects That Receive Coverage
	Abs
	Bias
	Combinatorial Logic
	Compare to Constant
	Compare to Zero
	Data Type Conversion
	Dead Zone
	Direct Lookup Table (n-D)
	Discrete Filter
	Discrete FIR Filter
	Discrete-Time Integrator
	Discrete Transfer Fcn
	Dot Product
	Enabled Subsystem
	Enabled and Triggered Subsystem
	Fcn
	For Iterator, For Iterator Subsystem
	Gain
	If, If Action Subsystem
	Index Vector
	Interpolation Using Prelookup
	Library-Linked Objects
	Logical Operator
	1-D Lookup Table
	2-D Lookup Table
	n-D Lookup Table
	Math Function
	MATLAB Function
	MATLAB System
	MinMax
	Model
	Multiport Switch
	Observer Model
	PID Controller, PID Controller (2 DOF)
	Product
	Proof Assumption
	Proof Objective
	Rate Limiter
	Relational Operator
	Relay
	C/C++ S-Function
	Saturation
	Saturation Dynamic
	Simulink Design Verifier Functions in MATLAB Function Blocks
	Sqrt, Signed Sqrt, Reciprocal Sqrt
	Sum, Add, Subtract, Sum of Elements
	Switch
	SwitchCase, SwitchCase Action Subsystem
	Test Condition
	Test Objective
	Triggered Models
	Triggered Subsystem
	Truth Table
	Unary Minus
	Weighted Sample Time Math
	While Iterator, While Iterator Subsystem

	Model Objects That Do Not Receive Coverage

	Setting Coverage Options
	Specify Coverage Options
	Coverage Pane

	Access, Manage, and Accumulate Coverage Results​​ by Using the Results Explorer
	Accessing Coverage Data from the Results Explorer
	Managing Coverage Data from the Results Explorer
	Accumulating Coverage Data from the Results Explorer

	Cumulative Coverage Data
	Cumulative Coverage Analysis
	Saturation on Integer Overflow Coverage

	Code Coverage
	Types of Code Coverage
	Statement Coverage for Code Coverage
	Condition Coverage for Code Coverage
	Decision Coverage for Code Coverage
	Modified Condition/Decision Coverage (MCDC) for Code Coverage
	Cyclomatic Complexity for Code Coverage
	Relational Boundary for Code Coverage
	Function Coverage
	Function Call Coverage

	Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode
	Enable SIL or PIL Code Coverage for a Model
	Review the Coverage Results for Models in SIL or PIL Mode
	Limitations

	Collect Code Coverage Metrics with Simulink® Coverage™
	Specify Code Coverage Options
	Models with S-Function Blocks
	Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks
	Models with MATLAB Function Blocks

	Coverage for Models with Code Blocks and Simulink Blocks
	Set Up the Model to Record Coverage
	Record Coverage
	Review Results by Generating a Coverage Report
	Justify Missing Coverage

	Software-in-the-Loop Code Coverage
	Use Justification Rules to Filter Code Coverage Outcomes

	Coverage Collection During Simulation
	Create and Run Test Cases
	Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage
	Differences between Masking MCDC and Unique-Cause MCDC in Simulink Coverage Coverage Analysis
	Certification Considerations for MCDC Coverage
	Setting the (MCDC) Definition Used for Simulink Coverage Coverage Analysis
	Modified Condition and Decision Coverage in Simulink Design Verifier

	Modified Condition and Decision Coverage in Simulink Design Verifier
	MCDC Definitions for Simulink Coverage and Simulink Design Verifier

	Logical Operator Cascade Patterns
	Analyzing MCDC for Cascaded Logic Blocks
	View Coverage Results in a Model
	Overview of Model Coverage Highlighting
	Enable Coverage Highlighting
	View Coverage Details

	Model Coverage for Multiple Instances of a Referenced Model
	About Coverage for Model Blocks
	Record Coverage for Multiple Instances of a Referenced Model

	Obtain Cumulative Coverage for Reusable Subsystems and Stateflow® Constructs
	Trace Coverage Results to Requirements by Using Simulink Test and Simulink Requirements
	Prerequisites for Tracing Requirements Links

	Assess Coverage Results from Requirements-Based Tests
	Rationale for Scoping Coverage Results to Linked Requirements-Based Tests
	Prerequisites for Scoping Coverage Results to Linked Requirements-Based Tests
	Coverage Reporting for Aggregated Coverage Results Scoped to Linked Requirements
	Example

	Trace Coverage Results to Associated Test Cases
	Prerequisites for Tracing Associated Test Cases to Coverage Results
	Aggregate Unit-Level Coverage Data into Top-Level Model Coverage

	Model Coverage for MATLAB Functions
	About Model Coverage for MATLAB Functions
	Types of Model Coverage for MATLAB Functions
	How to Collect Coverage for MATLAB Functions
	Examples: Model Coverage for MATLAB Functions

	Coverage for MATLAB® Function Blocks
	Coverage for Custom C/C++ Code in Simulink Models
	Enable Code Coverage for Custom C/C++ code in MATLAB Function Blocks, C Caller Blocks, and Stateflow Charts
	Code Coverage for S-Functions

	View Coverage Results for Custom C/C++ Code in S-Function Blocks
	Coverage for S-Functions
	Model Coverage for Stateflow Charts
	How Model Coverage Reports Work for Stateflow Charts
	Specify Coverage Report Settings for Stateflow Charts
	Cyclomatic Complexity for Stateflow Charts
	Decision Coverage for Stateflow Charts
	Condition Coverage for Stateflow Charts
	MCDC Coverage for Stateflow Charts
	Relational Boundary Coverage for Stateflow Charts
	Simulink Design Verifier Coverage for Stateflow Charts
	Model Coverage Reports for Stateflow Charts
	Model Coverage for Stateflow State Transition Tables
	Model Coverage for Stateflow Atomic Subcharts
	Model Coverage for Stateflow Truth Tables
	Model Coverage Display for Stateflow Charts
	Code Coverage for C/C++ code in Stateflow Charts

	Results Review
	Types of Coverage Reports
	Model Summary Report
	Model Reference Coverage Report
	External MATLAB File Coverage Report
	Subsystem Coverage Report
	Code Coverage Report

	Top-Level Model Coverage Report
	Analysis Information
	Aggregated Tests
	Coverage Summary
	Details
	Cyclomatic Complexity
	Decisions Analyzed
	Conditions Analyzed
	MCDC Analysis
	Cumulative Coverage
	N-Dimensional Lookup Table
	Block Reduction
	Relational Boundary
	Saturate on Integer Overflow Analysis
	Signal Range Analysis
	Signal Size Coverage for Variable-Dimension Signals
	Simulink Design Verifier Coverage

	Export Model Coverage Web View

	Excluding Model Objects from Coverage
	Coverage Filtering
	When to Use Coverage Filtering
	What Is Coverage Filtering?

	Coverage Filter Rules and Files
	What Is a Coverage Filter Rule?
	What Is a Coverage Filter File?

	Model Objects to Filter from Coverage
	Create, Edit, and View Coverage Filter Rules
	Create and Edit Coverage Filter Rules
	Save Coverage Filter to File
	Create New Coverage Filter File
	Load Coverage Filter File
	Remove Applied Coverage Filter
	Manage Applied filters by Using the Simulink Test Manager
	Update the Report with the Current Filter Settings
	View Coverage Filter Rules in Your Model

	Applied filters section of the coverage Results Explorer
	Creating and Using Coverage Filters

	Automating Model Coverage Tasks
	Automating Model Coverage Tasks
	Collect Coverage Data Using a Script
	Differences between sim and the Run Button
	Collecting Coverage with Simulink Test

	Retrieve Coverage Details from Results
	Analyze Coverage Data Using A Script
	Coverage Information Functions

	Command Line Verification Tutorial
	Extracting Detailed Information from Coverage Data
	Operations on Coverage Data
	Record Coverage in Parallel Simulations by Using Parsim
	Filter Coverage Results Using a Script

	Component Verification
	Component Verification
	Simulink Coverage Tools for Component Verification
	Workflow for Component Verification
	Verify a Component Independently of the Container Model
	Verify a Model Block in the Context of the Container Model

	Fix Requirements-Based Testing Issues

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012

	Create Back-to-back Tests Using Enhanced MCDC
	Set Up Test Inputs and Verification Strategy

	Create and Run Back-to-Back Tests using Enhanced MCDC

